We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




CT Attenuation Measurements Can Differentiate Bone Tumors

By MedImaging International staff writers
Posted on 31 Aug 2016
Print article
Image: A calcaneous bone with a benign enostosis (Photo courtesy of James Wittig).
Image: A calcaneous bone with a benign enostosis (Photo courtesy of James Wittig).
A new study suggests that computerized tomography (CT) attenuation measurements can be used to distinguish untreated osteoblastic metastases from benign bone lesions.

Researchers at Massachusetts General Hospital (MGH; Boston, USA) conducted a study in 62 patients with 279 sclerotic bone lesions found at CT. The cause of the sclerotic lesions was then assessed histologically, determining there were 126 benign enostoses (bone islands) in 37 patients, and 153 osteoblastic metastases in 25 patients. The researchers then performed an analysis of the CT images to determine sensitivity, specificity, AUC, 95% confidence intervals, and cutoff values of CT attenuation to help differentiate metastases from enostoses.

The researchers concluded that CT attenuation measurements can be used to distinguish untreated osteoblastic metastases from enostoses, and that a mean attenuation of 885 Hounsfield units (HU) and a maximum attenuation of 1,060 HU provide reliable thresholds below which a metastatic lesion is the favored diagnosis. According to the researchers, the detection of metastatic disease is crucial because it allows accurate diagnosing and determination of prognosis and can drastically change treatment. The study was published in the August 2016 issue of the American Journal of Roentgenology.

“While imaging has become an integral part of diagnosing patients presenting with malignancy, it can be confusing when an osteoblastic lesion is identified in the presence and absence of a primary malignancy,” concluded lead author Connie Chang, MD, of the MGH department of radiology, and colleagues. “As CT use has increased, the frequency of incidentally detected lesions has also increased.”

The Hounsfield scale is a quantitative scale for describing radiodensity, in which distilled water at standard pressure and temperature is defined as zero HU, while the radiodensity of air under the same conditions is defined as -1000 HU; one HU represents a change of 0.1% of the attenuation coefficient of water. A practical application of this is in evaluation of tumors, wherein an adrenal tumor with a radiodensity of less than 10 HU is rather fatty in composition and almost certainly benign.

Related Links:
Massachusetts General Hospital

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Pre-Op Planning Solution
Sectra 3D Trauma
New
Ultrasound Table
Ergonomic Advantage (EA) Line
New
Ultrasound System
Voluson Signature 18

Print article
Radcal

Channels

MRI

view channel
Image: The emerging role of MRI alongside PSA testing is redefining prostate cancer diagnostics (Photo courtesy of 123RF)

Combining MRI with PSA Testing Improves Clinical Outcomes for Prostate Cancer Patients

Prostate cancer is a leading health concern globally, consistently being one of the most common types of cancer among men and a major cause of cancer-related deaths. In the United States, it is the most... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.