We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Mathematical Tool Helps Predict the Occurrence of Migraines in Concussion Patients

By MedImaging International staff writers
Posted on 03 Feb 2016
Print article
Researchers have developed a mathematical tool to help find which concussion patients are most likely to suffer migraines.

The study results were published online in the journal Radiology. Patients with concussion injuries commonly suffer from post-traumatic migraine headaches. To investigate the relationship between headaches and concussion-related damage to the brain, researchers normally use a Magnetic Resonance Imaging (MRI) technique called Diffusion Tensor Imaging (DTI). Researchers create histograms of the whole brain, and then a mean Fractional Anistropy (FA). There are shortcomings with the FA technique however.

Instead of using the FA technique, the researchers analyzed the MRI scan results using Shannon entropy, an information theory model that that reveals areas of entropy, in the brain. The researchers then assessed the performance of Shannon entropy for use as a diagnostic tool for concussion patients with and without post-traumatic migraines. The study included 74 concussion patients – 57 with post-traumatic migraines and 17 without, 22 healthy control patients, and 20 control patients with migraine headaches. Mean FA and Shannon entropy results were calculated from the total brain FA histograms and compared between concussion patients and the control patients, and between those patients with, and those without post-traumatic migraine.

The results showed that using Shannon entropy analysis of FA histograms was more successful than mean FA as a diagnostic test to differentiate between concussion patients and controls. In addition, Shannon entropy was better in determining which concussion patients would develop post-traumatic migraines. The results also suggested that Shannon entropy could provide a reproducible biomarker that can be calculated automatically and can help triage patients after initial injury, and predict which patients are more likely to have severe symptoms.

Study author Lea M. Alhilali, MD, from the University of Pittsburgh Medical Center (UPMC; Pittsburgh, PA, USA), said, “Mean FA represents an average. If someone has a higher FA to begin with and they lose white matter integrity from trauma, they still might average out to have a normal mean FA. A healthy brain has high entropy, but people with injuries to the white matter from trauma may lose some of that complexity and have less entropy. This approach requires just one histogram for the entire brain. If it continues to show promise, then it could be added to the regular brain MRI as part of the study. Additional research is needed to study other potential applications of Shannon entropy, such as predicting future cognitive performance in concussion patients.”

Related Links:

UPMC


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Digital Radiography Acquisition Software
VXvue with PureImpact
Dose Calibration Electrometer
PC Electrometer
New
Ultrasound System
Acclarix AX9

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)

Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery

Intraoperative imaging faces significant challenges due to staff shortages and the high demands placed on surgical teams in the operating room (OR). A common challenge during many OR procedures is the... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.