We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




fMRI and Brain-Mapping of College Students Increases Understanding of Alcohol’s Effects

By MedImaging International staff writers
Posted on 03 Apr 2013
Print article
Image: Brain regions of interest (green) and group-level brain activity (red-yellow); data were averaged across three fMRI sessions and overlaid on a standard brain template (Photo courtesy of Penn State).
Image: Brain regions of interest (green) and group-level brain activity (red-yellow); data were averaged across three fMRI sessions and overlaid on a standard brain template (Photo courtesy of Penn State).
Researchers have just completed a first-of-its-kind longitudinal pilot study designed to understand better how the neural processes that motivate responses to alcohol-related cues change during students’ first year of college.

There is a large amount of anecdotal evidence confirming the many negative social and physical effects of the dramatic increase in alcohol use that frequently comes with many students’ first year of college. The behavioral alterations that go along those effects indicate underlying changes in the brain. However, in contrast to alcohol’s many other effects, its effect on the brain’s continuing development from adolescence into early adulthood--which includes the transition from high school to college--is not well known.

Pennsylvania State University (Penn State; University Park, USA) psychology graduate student Adriene Beltz, with a team of additional researchers, investigated the changes that occurred to alcohol-related neural processes in the brains of a small group of first-year students. Using functional magnetic resonance imaging (fMRI) technology and a data analysis technique known as effective connectivity mapping, the researchers collected and analyzed data from 11 students, who participated in a series of three fMRI sessions beginning just before the beginning of classes and concluding partway through the second semester.

Analysis of the data collected from the study participants revealed signs in their brains’ emotion processing networks of acclimatization to alcohol-related stimuli, and noticeable alterations in their cognitive control networks.

Recent studies have indicated that young adults’ cognitive development continues through the ages of the mid-20s, especially in those regions of the brain responsible for decision-making or judgment-related activity--the type of cognitive “fine-tuning” that potentially makes humans, in some senses, as much who humans are (and will be) as any other stage of their overall development.

Other recent research suggests that binge drinking during late adolescence may injure the brain in ways that could last into adulthood. This specific study demonstrated that connections among brain regions involved in emotion processing and cognitive control may change with increased exposure to alcohol and alcohol-related cues. Those connections also may influence other areas of the brain, such as those still-developing regions responsible for students’ decision-making and judgment abilities.

Study participants completed a task while in an fMRI scanner at the Penn State Social, Life, and Engineering Sciences Imaging Center, responding as quickly as possible, by pushing a button on a grip device, to an image of either an alcoholic beverage or a nonalcoholic beverage when both types of images were displayed sequentially on a screen. From the resulting data, effective connectivity maps were created for each individual and for the group.

Examining the final maps, the researchers discovered that brain regions involved in emotion-processing showed less connectivity when the students responded to alcohol cues than when they responded to nonalcohol cues, and that brain regions involved in cognitive control showed the most connectivity during the first semester of college. The findings suggest that the students needed to heavily recruit brain regions involved in cognitive control in order to overcome the alcohol-associated stimuli when instructed to respond to the non-alcohol cues.

“Connectivity among brain regions implicated in cognitive control spiked from the summer before college to the first semester of college,” stated Dr. Beltz. “This was particularly interesting because the spike coincided with increases in the participants’ alcohol use and increases in their exposure to alcohol cues in the college environment. From the first semester to the second semester, levels of alcohol use and cue exposure remained steady, but connectivity among cognitive control brain regions decreased. From this, we concluded that changes in alcohol use and cue exposure--not absolute levels--were reflected by the underlying neural processes.”

Although the immediate implications of the pilot study for first-year students are obvious, there are still a number of unanswered questions tied to alcohol’s longer-term effects on development, for college students after their first year and for those same individuals later in life.

To begin exploring those potential long-term effects, Mr. Beltz has planned follow-up research to track a larger number of participants over a greater length of time.

The study’s findings were published in the April 2013 issue of the journal Addictive Behaviors.

Related Links:

Pennsylvania State University


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Portable Color Doppler Ultrasound System
S5000
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
Portable Color Doppler Ultrasound Scanner
DCU10

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.