We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Clinical Trial for the Treatment of Parkinson’s Disease Using MR-Guided Focused Ultrasound

By MedImaging International staff writers
Posted on 12 Oct 2015
Print article
Researchers are conducting the first clinical trial of a new noninvasive treatment for symptoms of Parkinson’s disease using Magnetic Resonance Imaging (MRI)-guided ultrasound.

The researchers used MRI to guide ultrasound waves through the skin and skull to the globus pallidus region of the brain. The globus pallidus regulates voluntary movement and current treatment sometimes involves surgery or medication that treats symptoms such as tremors, rigidity and dyskinesia in Parkinson’s patients. Current treatment methods can temporarily reduce motor symptomatology, and have unwanted side effects.

The new technique was developed by researchers from the University of Maryland Medical Center (UMMC; Baltimore, MD, USA), and the UMM Center for Metabolic Imaging and Image-Guided Therapeutics (CMIT), and takes between two to four hours. The patient is treated in an MRI scanner and wears a transducer helmet within a head-immobilizing frame. The globus pallidus region of the brain is then targeted using ultrasound waves while images are acquired in real-time allowing physicians to monitor the target area and make adjustments if needed.

The results of the initial phase of the study show that patients experienced a significant improvement in hand tremors.

Principal investigator Howard M. Eisenberg, said, “The neurology community has made significant strides in helping patients with Parkinson’s over the years; utilization of MRI-guided focused ultrasound could help limit the life-altering side effects like dyskinesia to make the disease more manageable and less debilitating. We’re raising the temperature in a very restricted area of the brain to destroy tissue. The ultrasound waves create a heat lesion that we can monitor through MRI.”

Related Links:

UMMC


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Digital X-Ray Detector Panel
Acuity G4
Wall Fixtures
MRI SERIES
New
Ultrasound Scanner
TBP-5533

Print article

Channels

MRI

view channel
Image: MRI microscopy of mouse and human pancreas with respective histology demonstrating ability of DTI maps to identify pre-malignant lesions (Photo courtesy of Bilreiro C, et al. Investigative Radiology, 2024)

Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time

Pancreatic cancer is the leading cause of cancer-related fatalities. When the disease is localized, the five-year survival rate is 44%, but once it has spread, the rate drops to around 3%.... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.