We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

By MedImaging International staff writers
Posted on 14 May 2024
Print article
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of CHD can greatly enhance the prognosis and quality of life for children. However, inexperienced sonographers often struggle to accurately identify CHD using transthoracic echocardiogram (TTE) images. Therefore, there is a pressing need for an auxiliary CHD screening system that enables inexperienced sonographers and general practitioners to conduct TTE assessments in a simple and user-friendly manner, thus enhancing the rate and reach of CHD screening.

A new CHD detection system co-developed by researchers from Anhui Medical University (Anhui, China) to identify the TTE cardiac views integrates information from various views and modalities, visualizes the high-risk region, and predicts the probability of the subject being normal, atrial septal defect (ASD), or ventricular septal defect (VSD). This was accomplished through the development of a hierarchical network structure. Initially, the model recognizes the two modalities used in TTE—2D and Doppler—and identifies the cardiac views, which include the apical four-chamber (A4C), subxiphoid long-axis view (SXLAX) of the two atria, parasternal long-axis view (PSLAX) of the left ventricle, parasternal short-axis view (PSSAX) of the aorta, and suprasternal long-axis view (SSLAX). It then processes the features for each view and each modality using the ResNet50 backbone network.

Following the basic feature embedding module, the model amalgamated the data from all five views and subsequently merged the information derived from the two modal TTEs. The final predictions for each subject were then generated by the classifier, and a visualization of the high-risk regions for each child was created using the Grad-CAM strategy. After completing the TTE exam, the auxiliary CHD diagnostic system automatically analyzed the TTE images and assessed the likelihood of the subject being normal, or having ASD or VSD. The research team demonstrated that the model effectively identified children with CHD by integrating multiple views and modalities of TTEs. The findings indicate that this model could significantly aid in broadening CHD screening and accurately distinguishing between different CHD subtypes in children.

Related Links:
Anhui Medical University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Doppler String Phantom
CIRS Model 043A
New
Opaque X-Ray Mobile Lead Barrier
2594M
New
Portable Color Doppler Ultrasound System
S5000

Print article
Radcal

Channels

Radiography

view channel
Image: The CT scanner prototype eliminates the need for physical compression of the breast (Photo courtesy of Quion Lowe and Lisa Dahm/U of A Cancer Center)

Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram

Breast cancer represents 15.5% of new cancer cases and 7% of cancer-related deaths in the United States. Approximately 13.1% of women will be diagnosed with breast cancer during their lifetime.... Read more

Nuclear Medicine

view channel
mage: syngo.PET Cortical Analysis software enables the measurement of beta-amyloid and tau protein deposits in the brain (Photo courtesy of Siemens Healthineers)

PET Software Enhances Diagnosis and Monitoring of Alzheimer's Disease

Alzheimer’s disease is marked by the buildup of beta-amyloid plaques and tau protein tangles in the brain. These deposits of beta-amyloid and tau appear in various brain regions at differing rates as the brain ages.... Read more

General/Advanced Imaging

view channel
Image: Heavy smokers can ben Image (2):	efit from lung cancer screening using low-dose CT (Photo courtesy of 123RF)

Low-Dose CT Screening for Lung Cancer Can Benefit Heavy Smokers

Lung cancer is often diagnosed at a late stage, with only about one-fifth to one-sixth of patients surviving five years after diagnosis. A new report now suggests that low-dose computed tomography (CT)... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The advocacy partnership aims to help accelerate access to life-saving treatments (Photo courtesy of Philips)

Philips and Medtronic Partner on Stroke Care

A stroke is typically an acute incident primarily caused by a blockage in a brain blood vessel, which disrupts the adequate blood supply to brain tissue and results in the permanent loss of brain cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.