We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Researchers Develop AI Model to Make Cancer Treatment Less Toxic

By MedImaging International staff writers
Posted on 20 Aug 2018
Print article
Image: Researchers aim to improve the quality of life for patients suffering from glioblastoma with a machine-learning model that makes chemotherapy and radiotherapy dosing regimens less toxic but still as effective as human-designed regimens (Photo courtesy of MIT).
Image: Researchers aim to improve the quality of life for patients suffering from glioblastoma with a machine-learning model that makes chemotherapy and radiotherapy dosing regimens less toxic but still as effective as human-designed regimens (Photo courtesy of MIT).
Researchers from the Massachusetts Institute of Technology (Cambridge, MA, USA) have developed an artificial intelligence model that “learns” from patient data to make cancer-dosing regimens less toxic but still effective.

In a paper presented at the 2018 Machine Learning for Healthcare conference at Stanford University, MIT Media Lab researchers have detailed a novel machine-learning technique to improve the quality of life for patients by reducing toxic chemotherapy and radiotherapy dosing for glioblastoma, the most aggressive form of brain cancer. The “self-learning” machine-learning technique looks at the current treatment regimens in use and iteratively adjusts the doses, eventually finding an optimal treatment plan, with the lowest possible potency and frequency of doses that should still reduce tumor sizes to a degree comparable to that of traditional regimens.

In simulated trials of 50 patients, the machine-learning model designed treatment cycles that reduced the potency to a quarter or half of nearly all the doses while maintaining the same tumor-shrinking potential. It skipped doses altogether several times and scheduled administrations only twice a year instead of monthly.

The model is a major improvement over the conventional “eye-balling” method of administering doses, observing how patients respond, and adjusting accordingly, according to Nicholas J. Schork, a professor and director of human biology at the J. Craig Venter Institute, and an expert in clinical trial design. “[Humans don’t] have the in-depth perception that a machine looking at tons of data has, so the human process is slow, tedious, and inexact,” he said. “Here, you’re just letting a computer look for patterns in the data, which would take forever for a human to sift through, and use those patterns to find optimal doses.”

According to Schork, the work could be of particular interest to the US FDA, which is currently looking for ways to leverage data and artificial intelligence to develop health technologies. Regulations still need be established, he said, “but I don’t doubt, in a short amount of time, the FDA will figure out how to vet these [technologies] appropriately, so they can be used in everyday clinical programs.”

Related Links:
Massachusetts Institute of Technology

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Under Table Shield
3 Section Double Pivot Under Table Shield
New
Enterprise Imaging & Reporting Solution
Syngo Carbon
Thyroid Shield
Standard Thyroid Shield

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.