We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI X-ray Analysis Equal to Orthopedic Surgeon Diagnosis

By MedImaging International staff writers
Posted on 20 Jul 2017
Print article
Image: Examples of dataset images presents to networks for classification (Photo courtesy of Max Gordon/ Danderyd Hospital).
Image: Examples of dataset images presents to networks for classification (Photo courtesy of Max Gordon/ Danderyd Hospital).
A new study suggests that artificial intelligence (AI) deep learning algorithms are on par with humans for diagnosing fractures from orthopedic radiographs.

Researchers at Karolinska Institutet (KI; Solna, Sweden), the Royal Institute of Technology (KTH; Stockholm, Sweden), and Danderyd Hospital (Sweden) extracted 256,000 wrist, hand, and ankle radiographs stored at Danderyd Hospital, classifying them by four variables - fracture, laterality, body part, and exam view. Five deep learning networks were then examined, with the most accurate network benchmarked against a gold standard for fractures.

The deep learning networks were then trained to identify fractures in two thirds of the radiographs under the guidance of the researchers, and then independently analyzed the remaining images, which were completely new to the AI program. Analysis was then compared with that of two senior orthopedic surgeons who reviewed the images at the same resolution as the network. The results showed that all networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view.

The final accuracy for fractures was estimated at 83% for the best performing network, which was equivalent to that of senior orthopedic surgeons when they were presented with images at the same resolution as the network. According to the researchers, AI has the potential to do even better with access to greater amounts of data, and they have therefore begun a follow-up study that will include Danderyd Hospital's entire orthopedic archive of over a million high-resolution radiographs. The study was published on July 6, 2017, in Acta Orthopaedica.

“Our study shows that AI networks can make assessments on a par with human specialists, and we hope that we'll be able to achieve even better results with high-res X-ray images,” said senior author Max Gordon, MD, assistant consultant in orthopedics at Danderyd Hospital. “If we can go back to our digital archives, we'll also be able to do extensive research on survival, the development of disease and work capacity - studies that have been impossible to do owing to the amount of data to process.”

Deep learning is part of a broader family of machine learning methods that is based on learning data representations, as opposed to task specific algorithms. It involves artificial neural network (ANN) algorithms that use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Karolinska Institutet
Royal Institute of Technology
Danderyd Hospital
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
X-Ray Detector
FDR-D-EVO III
Portable X-Ray Unit
AJEX240H
Ultrasound Doppler System
Doppler BT-200

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.