We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3D Ultrasound System Guides Gynecologic Brachytherapy

By MedImaging International staff writers
Posted on 22 Apr 2019
Print article
Image: A 3D image US image generated from 2D frames (Photo courtesy of Aaron Fenster/ SPIE).
Image: A 3D image US image generated from 2D frames (Photo courtesy of Aaron Fenster/ SPIE).
A new study describes how a reconstructed three-dimensional (3D) ultrasound image can aid implant placement during interstitial gynecologic brachytherapy procedures.

Developed by researchers at Robarts Research Institute (RRI; London, Canada), Western University (London, Canada), and other institutions, the system is based on a combination of three scanning geometries - 3D transrectal US (TRUS), 360° 3D sidefire transvaginal US (TVUS), and 3D endfire TVUS. The images are generated by rotating a standard endocavity ultrasound transducer through 170 degrees during a 12-20 seconds rotation, which provides a reconstructed 3D image immediately following acquisition.

During feasibility studies of needle placement, mean differences in needle positions of 3.82 mm and 2.36 mm for TRUS and sidefire TVUS, respectively, were found, when compared to clinical CT images. A proof-of-concept phantom study of the system in endfire TVUS mode demonstrated a mean positional difference of just 1.91 mm. In addition, an automatic needle segmentation tool was tested on a 360° 3D TVUS patient image, resulting in a mean angular difference of 0.44° and mean positional difference of 0.78 mm, compared to manually segmented needles. The study was presented at the SPIE medical imaging conference, held during February 2019 in San Diego (CA, USA).

“Access to high-end imaging systems like CT and MRI to diagnose and treat diseases is difficult in some places in the world. So for that reason, we've been focusing on ultrasound, which is widely available everywhere in the world and can be used for a variety of applications," said senior author Professor Aaron Fenster, PhD, of RRI. “This technology has potential to be practice-changing. The short-term goal is to reduce complication rates - ensure that the needles don't go into the bladder, or the rectum, which creates complications. In addition, if the needles are placed correctly they will provide an improved dose pattern distribution to the tumor and surrounding tissue.”

Brachytherapy is a radiotherapy regimen in which a radioactive source is placed directly into or next to an organ or tissue. During high-dose-rate (HDR) interstitial brachytherapy of gynecologic malignancies, precise placement of multiple needles is necessary to provide optimal dose to the tumor while avoiding overexposing nearby healthy organs, such as the bladder and rectum. Currently, brachytherapy needles are placed based on preoperative imaging and clinical examination, but there is no standard protocol for intraoperative image guidance.

Related Links:
Robarts Research Institute
Western University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
X-ray Diagnostic System
FDX Visionary-A
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.