We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Diffraction-Enhanced Imaging Developed for Early Alzheimer's Disease Diagnosis

By MedImaging International staff writers
Posted on 27 Jul 2009
Researchers have demonstrated a new, highly detailed X-ray imaging technique that could be developed into an application for early diagnosis of Alzheimer's disease (AD). The technique has previously been used to look at tumors in breast tissue and cartilage in the human knee and ankle joints, but a new study is first to assess its ability to visualize a class of miniscule plaques that are a hallmark feature of AD.

The scientists, from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory (Upton, NY, USA), published their findings in the July 2009 issue of the journal NeuroImage. Researchers have long known that Alzheimer's disease is associated with plaques, areas of dense built-up proteins, in the affected brain. Many also believe that these plaques, called amyloid beta (Aß) plaques after the protein they contain, actually cause the disease. A major goal is to develop a drug that removes the plaques from the brain. However, before drug therapies can be tested, researchers need a noninvasive, safe, and cost-effective way to track the plaques' number and size.

That is no simple task: Aß plaques are extremely small--on the micrometer scale, or one millionth of a meter. Moreover, conventional techniques such as computed tomography (CT) poorly distinguish between the plaques and other soft tissue such as cartilage or blood vessels. "These plaques are very difficult to see, no matter how you try to image them,” said Dr. Dean Connor, a former postdoctoral researcher at Brookhaven Lab now working for the University of North Carolina (Chapel Hill). "Certain methods can visualize the plaque load, or overall number of plaques, which plays a role in clinical assessment and analysis of drug efficacy. But these methods cannot provide the resolution needed to show us the properties of individual Aß plaques.”

A technique developed at Brookhaven, called diffraction-enhanced imaging (DEI), might provide the extra imaging power researchers need. DEI, which makes use of extremely bright beams of X-rays available at synchrotron sources such as Brookhaven's National Synchrotron Light Source, is used to visualize not only bone, but also soft tissue in a manner that is not possible using standard X-rays. In contrast to conventional sources, synchrotron X-ray beams are thousands of times more intense and extremely concentrated into a narrow beam. The result is typically a lower X-ray dose with a higher image quality.

In this study, researchers from Brookhaven and Stony Brook University utilized DEI in a high-resolution mode called microcomputed tomography to visualize individual plaques in a mouse-brain model of Alzheimer's disease. The results not only revealed detailed images of the plaques, but also proved that DEI can be used on whole brains to visualize a wide range of anatomic structures without the use of a contrast agent.

The images are similar to those produced by high-resolution magnetic resonance imaging (MRI), with the potential to even exceed MRI pictures in resolution, according to Dr. Connor. "The contrast and resolution we achieved in comparison to other types of imaging really is amazing,” he said. "When DEI is used, everything just lights up.”

The radiation dose used for this study is too high to safely image individual Aß plaques in humans--the ultimate goal--but the results provide researchers with promising clues. "Now that we know we can actually see these plaques, the hope is to develop an imaging modality that will work in living humans,” Dr. Connor said. "We've also now shown that we can see these plaques in a full brain, which means we can produce images from a live animal and learn how these plaques grow.”

To make a diffraction-enhanced image, X-rays from the synchrotron are first tuned to one wavelength before being beamed at an anatomic structure or slide. As the monochromatic (single wavelength) beam passes through the tissue, the X-rays scatter and refract, or bend, at different angles depending on the characteristics of the tissue. The subtle scattering and refraction are detected by what is called an analyzer crystal, which diffracts (alters the intensity) of the X-rays by different amounts according to their scattering angles.

The diffracted beam is passed onto a radiographic plate or digital recorder, which documents the differences in intensity to show the interior structural details.

Related Links:

Brookhaven National Laboratory


Radiation Therapy Treatment Software Application
Elekta ONE
Portable X-ray Unit
AJEX140H
Ultrasound Imaging System
P12 Elite
Wall Fixtures
MRI SERIES
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.