We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New OCT Technique Images Cellular Structure of Eye

By MedImaging International staff writers
Posted on 16 Aug 2017
A new study describes how linear optical coherence tomography (OCT) allows clinicians to resolve individual photoreceptors, capillary blood vessels, and nerve fibers in the same image.

Developed at the Medical University of Vienna (MedUni; Austria) Line Field OCT uses noniterative digital aberration correction (DAC) to achieve aberration-free cellular-level resolution in OCT images of the human retina in vivo. The system is based on a line-field spectral-domain OCT system with a high tomogram rate. The researchers also applied DAC on functional OCT angiography data in order to improve lateral resolution and compensate for defocus.

Functionally, the Line Field OCT is similar to a scanner, focusing a thin linear beam of light onto the internal structures of the eye. With speeds reaching up to 2.5 kHz, DAC can be applied not only to image human cone photoreceptors, but also to obtain an aberration- and defocus-corrected three-dimensional (3D) volume. DAC speed necessities were measured by examining the axial motion of the OCT system in 36 subjects, with the aim of appropriately quantifying motion analysis. The study was published in the August 2017 issue of Optica.

“Our new technique enables us to make digital corrections without the need for expensive hardware-based adaptive lenses. The linear illumination that is used allows very rapid frame rates, which are extremely important for these corrections,” said lead author Laurin Ginner, MSc, of the MedUni Center for Medical Physics and Biomedical Engineering. “This enables us to correct aberrations over the entire three-dimensional volume of the retina.”

OCT is based on low-coherence interferometry, typically employing near-infrared (NIR) light. The use of relatively long wavelength light allows it to penetrate into the scattering medium. Depending on the properties of the light source, OCT can achieve sub-micrometer resolution. OCT, being an echo imaging method, is similar to ultrasound imaging, but is limited to 1-2 mm below the surface in biological tissue, as at greater depths the proportion of light that escapes without scattering is too small to be detected.

Related Links:
Medical University of Vienna


40/80-Slice CT System
uCT 528
Radiology Software
DxWorks
Wall Fixtures
MRI SERIES
Ultrasound Table
Women’s Ultrasound EA Table
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.