We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Rivals Radiologists in Intracranial Hemorrhage Detection

By MedImaging International staff writers
Posted on 04 Nov 2019
A new study shows that artificial intelligence (AI) convolutional neural networks (CNNs) can achieve accuracy levels comparable to those of highly trained radiologists.

Developed by researchers at the University of California, San Francisco (UCSF; USA), and the University of California Berkeley (UCB; USA), the patch-based fully convolutional network (PatchFCN) works by splitting a computed tomography (CT) scan into smaller patches in order to improve the detection rate of acute intracranial hemorrhage (ICH) on head CT scans. According to the researchers, segmentation offers many advantages, including better interpretability and quantifiable metrics for disease prognosis. In layman terms, hemorrhage is thus defined as “stuff” (e.g. water) rather than “things” (e.g. a car), due to its fluid nature.

Developed using 4,396 head CT scans as a learning model, PatchFCN performance was compared to that of four American Board of Radiology (ABR) certified radiologists on a test set of 200 randomly selected head CTs. The model demonstrated an average precision of 99% for detecting hemorrhages, the highest classification accuracy to date. In addition, PatchFCN provided a detailed tracing of each hemorrhage, highlighting abnormalities directly on the CT itself, helping neurosurgeons to visually confirm the locations of hemorrhages and to judge the need and the approach for surgical intervention. The study was published on October 21, 2019, in PNAS.

“Using a strong pixel-level supervision approach and a relatively small training dataset, we demonstrate an end-to-end network that performs joint classification and segmentation. It demonstrates the highest classification accuracy to date, compared to other deep learning approaches, and also concurrently localizes these abnormalities,” concluded lead author Weicheng Kuo, PhD, of UCB. “We demonstrate that it identifies many abnormalities missed by experts; in addition, we demonstrate promising results for multiclass hemorrhage segmentation, while preserving accurate detection at the examination level.”

Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
University of California, San Francisco
University of California Berkeley


Multi-Use Ultrasound Table
Clinton
Radiation Therapy Treatment Software Application
Elekta ONE
New
HF Stationary X-Ray Machine
TR20G
Digital Radiographic System
OMNERA 300M
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: The new type of Sonogenetic EchoBack-CAR T cell (Photo courtesy of Longwei Liu/USC)

Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.