We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




COVID-19 Findings Presented at RSNA 2020 Suggest AI Can Boost CT's Performance in Predicting Disease Severity

By MedImaging International staff writers
Posted on 01 Dec 2020
Chest computed tomography (CT) when combined with artificial intelligence (AI) can become a valuable tool for diagnosing COVID-19, according to presentations on chest imaging made at a scientific session at the RSNA 2020.

In the first presentation, a team of scientists shared results from a study conducted by Nvidia (Santa Clara, CA, USA) that combined a deep-learning algorithm with chest CT to predict if COVID-19 patients needed to be admitted to the intensive care unit (ICU). The team analyzed 632 chest CT scans of COVID-19 patients confirmed by RT-PCR testing, out of which 69 patients were admitted to the ICU. The scientists developed a whole-lung segmentation algorithm and evaluated its effectiveness in terms of overall accuracy, sensitivity, and specificity when used along with CT. They found that the algorithm demonstrated high accuracy, specificity, and negative predictive value (NPV) in the identification of COVID-19 and predicting ICU admission by using chest CT. These findings indicate that AI can significantly improve the performance of CT in predicting COVID-19 severity.

"This deep-learning algorithm can alert the clinician to the enhanced potential of ICU admission, when combined with other clinical features," said Ziyue Xu, PhD, senior scientist at Nvidia. "Based upon chest CT alone, AI-based deep-learning algorithms can reasonably predict clinical outcomes such as ICU admission in patients with COVID-19 who underwent CT and PCR on the day of admission. The model is feasible with reasonable accuracy and specificity of prediction."

In another presentation, a team of researchers from the University of Pennsylvania (Philadelphia, PA, USA) highlighted their new approach for quantifying the percentage of lung volume involved in airspace disease on chest X-rays by using a convolutional neural network (CNN) algorithm based on 1,000 chest CT scans of COVID-19 patients. The study involved 86 patients with positive RT-PCR results who had chest CT and chest X-ray performed less than 48 hours apart. The algorithm used quantitative maps of lung tissue thickness and manifestations of airspace disease to project the CT exams' 3D lung and airspace disease segmentation on reconstructed X-rays. The researchers found that the CNN-reconstructed X-rays were as good as the human CT exam readers in quantifying airspace disease with CT recording a rate of 24.3% as against a rate of 24.4% by the CNN's digitally reconstructed X-rays.

"This approach may increase efficiency and consistency in chest x-ray interpretation of COVID-19 patients, especially when applied to longitudinal chest x-ray data to inform management," said Dr. Eduardo Jose Mortani Barbosa of the University of Pennsylvania.

Related Links:
Nvidia
University of Pennsylvania



Digital X-Ray Detector Panel
Acuity G4
New
Cylindrical Water Scanning System
SunSCAN 3D
Radiology Software
DxWorks
Portable X-ray Unit
AJEX140H
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.