We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Wearable Neuroimaging Cap Maps the Pediatric Brain

By MedImaging International staff writers
Posted on 01 Dec 2020
Brain mapping technology based on optical tomography can help understand how conditions such as autism and cerebral palsy develop in babies, suggests a new study.

Developed by researchers at University College London (UCL, United Kingdom), the University of Cambridge (United Kingdom), and other institutions, the high-density diffuse optical tomography (HD-DOT) cap uses hundreds of light emitting diodes (LEDs) and optical detectors arranged in a dense network over the scalp to map changes in oxygenation in the brain, creating high-quality, three-dimensional (3D) images of brain activity without the need for a magnetic resonance imaging ( MRI) scanner.

Using a well-established social stimulus paradigm, the researchers showed it is possible to obtain high-quality, functional images of the infant brain using HD-DOT, with minimal environmental constraints. The results were consistent with low-density functional near-infrared spectroscopy (fNIRS) measures, but showed superior spatial localization, improved depth specificity, higher signal to noise ratio (SNR) and a dramatic improvement in the consistency of the responses across participants. The study was published on October 24, 2020, in NeuroImage.

“The approach we have demonstrated is safe, silent, and wearable, and can produce images of brain function with better spatial resolution than any other comparable technology,” said lead author Elisabetta Maria Frijia, PhD, of the UCL department of Medical Physics and Biomedical Engineering. “Our hope is that this new generation of technologies will allow researchers from a whole range of fields to learn more about how the healthy infant brain develops and establish new ways of diagnosing, monitoring and ultimately treating neurological conditions like autism and cerebral palsy.”

“There is a lot we still don't know about how the brain develops, and a big part of the problem is that studying the infant brain is really difficult with traditional scanners. As any parent knows, 6-month old babies are very active; they move around all the time and are easily distracted,” said senior author Rob Cooper, PhD, also of the UCL department of Medical Physics and Biomedical Engineering. “Using a technique like MRI, the subject has to remain completely still, which is almost impossible with babies unless they are asleep or sedated.”

HD-DOT exploits flexible electronics to produce ultra-low profile, lightweight sensors that can be directly interconnected to form imaging arrays. By combining various modules together via an in-built board-to-board connector, the system can be used to create a wide range of ultra-lightweight, flexible imaging arrays that incorporate hundreds of emitters and detectors of NIR light to safely image the whole cortex of infant brain.

Related Links:
University College London
University of Cambridge



Radiology Software
DxWorks
Digital Radiographic System
OMNERA 300M
Digital X-Ray Detector Panel
Acuity G4
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.