We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Photoacoustic Imaging Differentiates Thyroid Nodules

By MedImaging International staff writers
Posted on 22 Jul 2021
A new study shows how combining photoacoustic (PA) and ultrasound imaging technology with artificial intelligence (AI) can help distinguish thyroid nodules from cancer tumors.

Researchers at Catholic University of Korea (Seoul, South Korea), Pohang University of Science and Technology (POSTECH; South Korea), and Pusan National University (Busan, South Korea) conducted an in vivo multispectral PA imaging study on thyroid nodules in 52 patients. From the data, they then calculated hemoglobin oxygen saturation levels, and then used AI techniques to automatically classify whether the thyroid nodule was malignant or benign.

The results showed that when compared to known histopathology results of the excised nodules, sensitivity to classify malignancy was 78% and specificity to classify as benign was 93%. When the researchers kept sensitivity at 100% in a subsequent analysis, specificity reached 55%, which was about three times higher than the specificity of 17.3% found in the initial examination of thyroid nodules when using conventional ultrasound. The study was published on June 18, 2021, in Cancer Research.

“The ultrasonic device based on photoacoustic imaging will be helpful in effectively diagnosing thyroid cancer, commonly found during health checkups, and in reducing the number of biopsies,” said senior author Professor Dong-Jun Lim, MD, of St. Mary's Hospital, part of Catholic University of Korea. “It can be developed into a medical device that can be readily used on thyroid nodule patients.”

PA imaging uses non-ionizing laser pulses delivered into biological tissues. Some of the delivered energy is absorbed and converted into heat, leading to a transient thermoelastic expansion that causes wideband ultrasonic emission, which can be detected by ultrasonic transducers and analyzed to produce images. The magnitude of the PA signal is proportional to local energy deposition, which can be demonstrated by optical absorption contrast on the images of the targeted areas.

Related Links:
Catholic University of Korea
Pohang University of Science and Technology
Pusan National University



Computed Tomography System
Aquilion ONE / INSIGHT Edition
X-Ray Illuminator
X-Ray Viewbox Illuminators
Ultrasonic Pocket Doppler
SD1
X-ray Diagnostic System
FDX Visionary-A
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.