We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Can Predict Need for CT in Pediatric Patients After Mild Traumatic Brain Injury

By MedImaging International staff writers
Posted on 06 Apr 2022

Only 10% of CT scans unveil positive findings in mild traumatic brain injury, raising concerns of its overuse in this population. A number of clinical rules have been developed to address this issue, but they still suffer limitations in their specificity. Machine learning models have been applied in limited studies to mimic clinical rules; however, further improvement in terms of balanced sensitivity and specificity is still needed. In a new study, researchers have found that deep neural networks can be uesd to predict the need for CT in pediatric mild traumatic brain injury.

For their study, researchers at The University of Queensland (Brisbane, Australia) applied a deep artificial neural networks (DANN) model and an instance hardness threshold algorithm to reproduce the Pediatric emergency Care Applied Research Network (PECARN) clinical rule in a pediatric population collected as a part of the PECARN study between 2004 and 2006. The DANN model was applied using 14,983 patients younger than 18 years with Glasgow Coma Scale scores ≥ 14 who had head CT reports. The clinical features of the PECARN rules, PECARN-A (group A, age < 2 years) and PECARN-B (group B, age ≤ 2 years), were used to directly evaluate the model. The average accuracy, sensitivity, precision, and specificity were calculated by comparing the model’s prediction outcome to that reported by the PECARN investigators. The instance hardness threshold and DANN model were applied to predict the need for CT in pediatric patients using fivefold cross-validation.

Based on the findings, the researchers concluded that a DANN model achieved comparable sensitivity and outstanding specificity for replicating the PECARN clinical rule and predicting the need for CT in pediatric patients after mild traumatic brain injury compared with the original statistically derived clinical rule.

Related Links:
The University of Queensland 

Ultrasonic Pocket Doppler
SD1
Silver Member
X-Ray QA Meter
T3 AD Pro
New
MRI Infusion Workstation
BeneFusion MRI Station
New
Specimen Radiography System
Trident HD
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.