We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Generative AI Tool Enables Timely Interpretation of Chest X-Rays by ED Physicians

By MedImaging International staff writers
Posted on 06 Oct 2023

Quick and accurate interpretation of diagnostic X-rays is essential in emergency departments (ED), but not all facilities have round-the-clock radiology services. Generative AI technologies can potentially bridge this gap by offering nearly immediate interpretations of medical images, and handling a high number of cases without getting tired or needing additional staff. Now, a new AI model has been developed to help emergency doctors identify life-threatening conditions in chest X-rays.

A team of researchers at Northwestern University (Chicago, IL, USA) set out to create and assess a generative AI tool specifically designed for interpreting chest X-rays in an emergency setting. This AI model belongs to a newer category of generative AI known as transformer models. These models combine large language models, similar to ChatGPT, with deep learning techniques to analyze images. In simple terms, the AI tool works as an encoder-decoder model that takes chest X-ray images and generates a corresponding radiology report. The team trained the model using 900,000 chest X-ray reports that contained textual findings from radiologists.

To evaluate the model's effectiveness, the researchers took a set of 500 X-rays from their own ED, which had been previously reviewed by both a remote teleradiology service and an in-house radiologist between January 2022 and January 2023. These reports were individually compared to the AI-generated reports by six emergency department physicians, using a 5-point Likert scale for assessment. The sample consisted of 336 normal X-rays (67.2%) and 164 abnormal ones (32.8%), with frequent findings including issues like infiltrates, pulmonary edema, and pleural effusions, among others. Upon evaluation, the team found that the AI model's accuracy and quality of text were almost on par with the traditional methods.

“The generative AI model produced reports of similar clinical accuracy and textual quality to radiologist reports while providing higher textual quality than teleradiologist reports,” the group wrote. “Implementation of the model in the clinical workflow could enable timely alerts to life-threatening pathology while aiding imaging interpretation and documentation.”

Related Links:
Northwestern University

New
MRI Infusion Workstation
BeneFusion MRI Station
Radiology Software
DxWorks
New
HF Stationary X-Ray Machine
TR20G
Ultrasound Table
Women’s Ultrasound EA Table
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.