We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




CT-Based Deep Learning Algorithm Accurately Differentiates Benign From Malignant Vertebral Fractures

By MedImaging International staff writers
Posted on 04 Apr 2024

The rise in the aging population is expected to result in a corresponding increase in the prevalence of vertebral fractures which can cause back pain or neurologic compromise, leading to impaired function or disability. Clinically, benign and malignant vertebral fractures are not distinguishable because they typically occur without adequate trauma. CT imaging plays a key role in distinguishing between benign and malignant vertebral fractures due to the technology’s widespread availability and ability to depict fracture lines on different reconstructed planes. However, distinguishing between benign and malignant vertebral fractures remains challenging with CT alone. Now, a new study has shown that CT-based deep learning models can effectively discriminate benign from malignant vertebral fractures. The study found that the models performed better than or similar to radiology residents and as good as a fellowship-trained radiologist.

In the study, researchers at the Technical University of Munich (TUM, Munich, Germany) examined if the CT-based deep learning models could reliably differentiate between benign and malignant vertebral fractures. The study retrospectively identified CT scans acquired between June 2005 and December 2022 of patients with benign or malignant vertebral fractures based on a composite reference standard that included histopathologic and radiologic information. The researchers randomly selected an internal test set and obtained an external test set from another hospital.

The CT-based deep learning models utilized three-dimensional U-Net encoder-classifier architecture and applied data augmentation during training. The researchers evaluated the models’ performance using the area under the receiver operating characteristic curve (AUC) and compared it with that of two residents and one fellowship-trained radiologist using the DeLong test. The study revealed that the developed models had high discriminatory power for differentiating between benign and malignant vertebral fractures. Their performance surpassed or equaled that of radiology residents and matched that of a fellowship-trained radiologist.

Related Links:
TUM

Silver Member
X-Ray QA Meter
T3 AD Pro
Radiology Software
DxWorks
New
Ultrasound Table
Women’s Ultrasound EA Table
3T MRI Scanner
MAGNETOM Cima.X
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: Combining AI with bpMRI improves detection of clinically significant prostate cancer (Photo courtesy of 123RF)

Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer

Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.