We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Reduces Unnecessary Radiation Exposure in Traumatic Neuroradiological CT Scans

By MedImaging International staff writers
Posted on 25 Sep 2024

Traumatic neuroradiological emergencies encompass conditions that require immediate and accurate diagnosis for effective treatment and optimal patient outcomes. These emergencies can include injuries to the brain or spinal cord. Computed tomography (CT) is one of the most widely used imaging techniques in such situations due to its availability and speed, making it a vital tool in emergency departments for assessing the severity of injuries and guiding treatment. However, a significant limitation of CT scans is the relationship between radiation dose and image quality. CT scans involve exposure to ionizing radiation, which poses a potential long-term risk to patients, including the development of cancer. Recently, modern artificial intelligence (AI) reconstruction algorithms have emerged, offering the potential to reduce radiation doses while maintaining high image quality. These AI algorithms could minimize the risks associated with ionizing radiation and improve patient outcomes, though the extent to which they reduce radiation exposure in traumatic neuroradiological CT scans has not been extensively studied.

To address this, researchers at Eberhard Karls-University Tuebingen (Tuebingen, Germany) conducted a comparative study to evaluate the performance of a deep learning-based denoising (DLD) algorithm in CT scans of patients with traumatic neuroradiological emergencies. They proposed that the use of these algorithms could allow for high-quality imaging at reduced radiation doses, thereby improving patient care by minimizing unnecessary radiation exposure. The retrospective, single-center study involved 100 patients who had undergone neuroradiological trauma CT scans. Both full-dose (100%) and low-dose (25%) simulated scans were processed using iterative reconstruction (IR2) and the DLD algorithm. Four neuroradiologists assessed the subjective and objective quality of the images, alongside a clinical endpoint analysis. Bayesian sensitivity and specificity were calculated with 95% credible intervals.

The study found that the DLD algorithm produced high-quality, fully diagnostic CT images at just 25% of the standard radiation dose, demonstrating its potential to enhance patient care by reducing unnecessary radiation exposure. The algorithm’s ability to maintain image quality at significantly lower radiation doses highlights its promise in addressing concerns about radiation exposure, particularly in the context of frequent head CT use in neuroradiological emergencies. This issue has been a growing concern for both patients and physicians, particularly regarding the carcinogenic risks associated with long-term radiation exposure, especially in younger patients. The findings of this study contribute to ongoing efforts to reduce radiation doses in medical imaging and emphasize the importance of further research into dose-reduction techniques.

Related Links:
Eberhard Karls-University Tuebingen

Ultrasound Table
Women’s Ultrasound EA Table
New
Ultrasound Needle Guide
Ultra-Pro 3
3T MRI Scanner
MAGNETOM Cima.X
New
Mobile Cath Lab
Photon F65/F80
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.