We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Model Achieves Clinical Expert Level Accuracy in Analyzing Complex MRIs and 3D Medical Scans

By MedImaging International staff writers
Posted on 07 Oct 2024
Print article
Image: The new AI model efficiently reaches clinical-expert-level accuracy in complex medical scans (Photo courtesy of Leticia Ortiz/UCLA)
Image: The new AI model efficiently reaches clinical-expert-level accuracy in complex medical scans (Photo courtesy of Leticia Ortiz/UCLA)

Artificial neural networks train by performing repeated calculations on large datasets that have been carefully examined and labeled by clinical experts. While standard 2D images display length and width, 3D imaging technologies introduce depth, creating "volumetric" images that require more time, skill, and attention for expert interpretation. For instance, a 3D retinal imaging scan may consist of nearly 100 2D images, necessitating several minutes of close examination by a highly trained specialist to identify subtle disease biomarkers, such as measuring the volume of an anatomical swelling. Now, researchers have developed a deep-learning framework that rapidly trains itself to automatically analyze and diagnose MRIs and other 3D medical images, achieving accuracy comparable to medical experts but in a fraction of the time.

Unlike other models being developed for 3D image analysis, the new framework created by researchers at UCLA (Los Angeles, CA, USA) is highly adaptable across various imaging modalities. It has been studied with 3D retinal scans (optical coherence tomography) for disease risk biomarkers, ultrasound videos for heart function assessment, 3D MRI scans to evaluate liver disease severity and 3D CT scans for chest nodule malignancy screening. In a paper published in Nature Biomedical Engineering, the researchers highlight the broad capabilities of the system, suggesting that it could be valuable in many other clinical settings. Additional studies are planned to further explore its applications.

The UCLA model, named SLIViT (SLice Integration by Vision Transformer), features a unique combination of two artificial intelligence components and a specialized learning approach. According to the researchers, this combination enables it to accurately predict disease risk factors from medical scans across multiple volumetric modalities, even with moderately sized labeled datasets. SLIViT’s automated annotation could benefit both patients and clinicians by enhancing diagnostic efficiency and timeliness, while also advancing medical research by reducing data acquisition costs and shortening the time required for data collection. Additionally, it establishes a foundational model that can expedite the development of future predictive models.

“SLIViT overcomes the training dataset size bottleneck by leveraging prior ‘medical knowledge’ from the more accessible 2D domain,” said Berkin Durmus, a UCLA PhD student and co-first author of the article. “We show that SLIViT, despite being a generic model, consistently achieves significantly better performance compared to domain-specific state-of-the-art models. It has clinical applicability potential, matching the accuracy of manual expertise of clinical specialists while reducing time by a factor of 5,000. And unlike other methods, SLIViT is flexible and robust enough to work with clinical datasets that are not always in perfect order.”

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mammography Analytics Platform
Unifi Analytics Software
NMUS & MSK Ultrasound
InVisus Pro
New
Gold Member
X-Ray QA Meter
T3 RG Pro

Print article
Radcal

Channels

Ultrasound

view channel
Image: Disease captured by the hand-held 3D photoacoustic scanner (Photo courtesy of Dr. Nam Huynh)

Medical Imaging Breakthrough to Revolutionize Cancer and Arthritis Diagnosis

Photoacoustic tomography (PAT) imaging uses laser-generated ultrasound waves to detect subtle changes in small veins and arteries, typically less than a millimeter in size and up to 15mm deep in human tissues.... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

General/Advanced Imaging

view channel
Image: A kidney showing positive [89Zr]Zr-girentuximab PET and histologically confirmed clear-cell renal cell carcinoma (Photo courtesy of Dr. Brian Shuch/UCLA Health)

Non-Invasive Imaging Technique Accurately Detects Aggressive Kidney Cancer

Kidney cancers, known as renal cell carcinomas, account for 90% of solid kidney tumors, with over 81,000 new cases diagnosed annually in the United States. Among the various types, clear-cell renal cell... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Focused ultrasound therapy is poised to become an essential tool in every hospital, cancer care center and physician office (Photo courtesy of Arrayus)

Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer

Pancreatic cancer remains one of the most difficult cancers to treat due to its dense tissue structure, which limits the effectiveness of traditional drug therapies. Bracco Imaging S.A. (Milan, Italy)... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.