We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Diagnostic Imaging Could Improve Ear Infection Diagnosis

By MedImaging International staff writers
Posted on 07 Sep 2016
Print article
Image: A new way of imaging the middle ear uses infrared light (Photo courtesy of MIT).
Image: A new way of imaging the middle ear uses infrared light (Photo courtesy of MIT).
A new study claims that shortwave infrared (SWIR) light could greatly improve ear infection diagnoses and drastically reduce unnecessary antibiotic prescriptions, a major cause of antibiotic resistance.

Researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) and the University of Connecticut Health Center (Farmington, USA) demonstrated the potential of SWIR light for diagnostic purposes through the development of a medical otoscope that could help determine middle ear pathologies, such as otitis media, by visualizing middle ear structures through the tympanic membrane, including the ossicular chain, promontory, round window niche, and chorda tympani, which are undetectable by visible light pneumotoscopy.

The deeper tissue penetration of SWIR light not only allows better structure visualization, but also holds the potential of middle ear fluid detection, which has significant implications for diagnosing otitis media, the overdiagnosis of which is a primary factor in increased antibiotic resistance. The researchers found that middle ear fluid shows strong light absorption between 1,400 and 1,550 nm, enabling facile detection in a model using the SWIR otoscope. The study was published on August 22, 2016, in the Proceedings of the National Academy of Sciences (PNAS).

“The one clear diagnostic sign of an infection in the ear is a buildup of fluid behind the eardrum; but the view through a conventional otoscope can't penetrate deeply enough into the tissues to reveal such buildups,” said study co-author Jessica Carr, MSc, an MIT doctoral student. “A lot of times, it's a fifty-fifty guess as to whether there is fluid there. One of the limitations of the existing technology is that you can't see through the eardrum, so you can't easily see the fluid. But the eardrum basically becomes transparent to our device.”

Visualizing structures deep inside opaque biological tissues is one of the central challenges in biomedical imaging. Optical imaging with visible light provides high resolution and sensitivity; however, scattering and absorption of light by tissue limits the imaging depth to superficial features. SWIR shares many of the advantages of visible imaging, but light scattering in tissue is reduced, providing sufficient optical penetration depth to noninvasively interrogate subsurface tissue features.

Related Links:
Massachusetts Institute of Technology
University of Connecticut Health Center

New
Portable X-ray Unit
AJEX140H
Opaque X-Ray Mobile Lead Barrier
2594M
New
Digital Radiography System
DigiEye 330
Radiation Therapy Treatment Software Application
Elekta ONE

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.