We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New OCT Technique Images Cellular Structure of Eye

By MedImaging International staff writers
Posted on 16 Aug 2017
Print article
Image: A new OCT technique provides better 3D imaging of the eye (Photo courtesy of MedUni Vienna).
Image: A new OCT technique provides better 3D imaging of the eye (Photo courtesy of MedUni Vienna).
A new study describes how linear optical coherence tomography (OCT) allows clinicians to resolve individual photoreceptors, capillary blood vessels, and nerve fibers in the same image.

Developed at the Medical University of Vienna (MedUni; Austria) Line Field OCT uses noniterative digital aberration correction (DAC) to achieve aberration-free cellular-level resolution in OCT images of the human retina in vivo. The system is based on a line-field spectral-domain OCT system with a high tomogram rate. The researchers also applied DAC on functional OCT angiography data in order to improve lateral resolution and compensate for defocus.

Functionally, the Line Field OCT is similar to a scanner, focusing a thin linear beam of light onto the internal structures of the eye. With speeds reaching up to 2.5 kHz, DAC can be applied not only to image human cone photoreceptors, but also to obtain an aberration- and defocus-corrected three-dimensional (3D) volume. DAC speed necessities were measured by examining the axial motion of the OCT system in 36 subjects, with the aim of appropriately quantifying motion analysis. The study was published in the August 2017 issue of Optica.

“Our new technique enables us to make digital corrections without the need for expensive hardware-based adaptive lenses. The linear illumination that is used allows very rapid frame rates, which are extremely important for these corrections,” said lead author Laurin Ginner, MSc, of the MedUni Center for Medical Physics and Biomedical Engineering. “This enables us to correct aberrations over the entire three-dimensional volume of the retina.”

OCT is based on low-coherence interferometry, typically employing near-infrared (NIR) light. The use of relatively long wavelength light allows it to penetrate into the scattering medium. Depending on the properties of the light source, OCT can achieve sub-micrometer resolution. OCT, being an echo imaging method, is similar to ultrasound imaging, but is limited to 1-2 mm below the surface in biological tissue, as at greater depths the proportion of light that escapes without scattering is too small to be detected.

Related Links:
Medical University of Vienna

Ultra-Flat DR Detector
meX+1717SCC
Ultrasonic Pocket Doppler
SD1
Ultrasound Imaging System
P12 Elite
X-Ray Illuminator
X-Ray Viewbox Illuminators

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.