We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Imaging Software Analyzes Kidney Stone Composition

By MedImaging International staff writers
Posted on 26 Dec 2017
Print article
Image: CT texture metrics can identify kidney stone composition (Photo courtesy of StoneChecker).
Image: CT texture metrics can identify kidney stone composition (Photo courtesy of StoneChecker).
A streamlined, semi-automated tool analyzes kidney stones instantly using a patient’s computerized tomography (CT) scans.

The StoneChecker (Radstock, United Kingdom) software, based on the TexRAD (Cambridge, United Kingdom) algorithm, examines the physical attributes of a renal stone on non-contrast enhanced CT scan slices. The patented filtration-histogram CT Texture Analysis (CTTA) algorithm highlights coarse features, using histogram analysis to quantify and assess distribution of grey-levels, coarseness, and regularity within the region of interest. Filters that extract and enhance image features at larger scales reduce noise artifacts, whilst heterogeneity in stone architecture is enhanced.

Stonechecker then prepares a report of a stone’s given characteristics, such as volume, mean Hounsfield unit (HU) density, skin to stone distance, entropy, kurtosis, skew and other metrics. Each of these factors has been shown to be relevant in predicting stone-free rates and the potential outcome of a lithotripsy procedure carried out on the stone. Heterogeneity parameters at different spatial scales enable quantitative assessment of imaging biomarkers within the kidney stones, which can then be used to identify treatment failure on pre-treatment CT.

“CTTA metrics reflect stone characteristics and composition and predict ease of shock wave lithotripsy fragmentation. The strongest correlation with the number of shocks required to fragment a kidney stone is mean HU density and the entropy of the pixel distribution of the stone image,” reports the company. “With the aid of multiple linear regression analysis, the CTTA metrics of entropy and kurtosis can predict 92% of the outcome of number of shocks needed to fragment the stone.”

Kidney stones are often no larger than a grain of rice, yet some can grow to a diameter of several centimeters, causing blockage of the ureters. If it cannot be dissolved chemically, the kidney stone is treated using extracorporeal shock-wave therapy or minimally invasive endoscopic modalities. Many of these patients suffer from disease recurrence and need retreatment, but new stone formation might be reduced by adapting dietary habits or the use of particular medication strategies, as based on stone composition.

Related Links:
StoneChecker
TexRAD
New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Ultrasound Table
Women’s Ultrasound EA Table
Portable Color Doppler Ultrasound Scanner
DCU10
Mobile Cath Lab
Photon F65/F80

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.