We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Virtual Heart Technology Guides Cardiac Ablation Procedures

By MedImaging International staff writers
Posted on 04 Oct 2018
Print article
Image: A 3D simulated virtual heart (Photo courtesy of JHU).
Image: A 3D simulated virtual heart (Photo courtesy of JHU).
A new study describes how personalized three-dimensional (3D) simulations can pinpoint infarct-related ventricular tachycardia (VT) ablation sites.

Developed by researchers at Johns Hopkins University (JHU; Baltimore, MD, USA), Simula Research Laboratory (Simula; Fornebu, Norway), the University of Utah (Salt Lake City, USA), and other institutions, the 3D personalized computational models are based on contrast-enhanced clinical magnetic resonance imaging (MRI) cardiac scans, with each virtual tissue cell generating electrical signals calculated using mathematical equations to represent which heart cells are healthy, and which are semiviable due to proximity to the infarction scar.

By stimulating the patient’s virtual heart, the computer program can determine if the heart develops an arrhythmia, and the location of the tissue perpetuating it. The 3D model can then simulate an ablation to that area. The procedure can be repeated over and over again to find multiple ablation locations for the actual patient. For the study, the researchers first created personalized heart models of 21 people who underwent successful cardiac ablation procedures for infarct-related VT at JHU Hospital between 2006 and 2017. The 3D modeling correctly identified and predicted ablation sites.

In five of the patients, the amount of ablated tissue identified by the 3D model was smaller overall--in some cases, more than 10 times smaller--than the actual area destroyed during the procedures. The researchers then tested the 3D simulation to guide actual cardiac ablation treatments for another five patients. Most patients have remained free of VT throughout the follow-up period. In two patients, the virtual heart approach predicted that tachycardias would not be inducible, which was confirmed during the clinical procedure, so cardiac ablation was not performed. The study was published on September 3, 2018, in Nature Biomedical Engineering.

“Our new study results suggest we can remove a lot of the guesswork, standardize treatment, and decrease the variability in outcomes, so that patients remain free of arrhythmia in the long term,” said senior author Professor Natalia Trayanova, PhD, of the JHU department of biomedical engineering. “The approach could improve infarct-related VT ablation guidance, where accurate identification of patient-specific optimal targets could be achieved on a personalized virtual heart before the clinical procedure.”

In VT, the electrical signals in the heart’s lower chambers misfire, crippling the relaxation and refilling process and producing rapid arrhythmias. Numerous drugs are available to treat and manage infarct-related VT, but side effects and limitations of the drugs have increased focus on other interventions, especially cardiac ablation, which is successful anywhere between 50 and 88 percent of the time, but the outcomes are difficult to predict.

Related Links:
Johns Hopkins University
Simula Research Laboratory
University of Utah
New
MRI System
Ingenia Prodiva 1.5T CS
Ultrasound Imaging System
P12 Elite
3T MRI Scanner
MAGNETOM Cima.X
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.