We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Advanced Imaging Measures Iron Levels in Brain

By MedImaging International staff writers
Posted on 10 Dec 2018
Print article
Image: Combining dcMEG data with an MRI shows magnetite location in the brain (Photo courtesy Sheraz Kahn/ MGH).
Image: Combining dcMEG data with an MRI shows magnetite location in the brain (Photo courtesy Sheraz Kahn/ MGH).
A new study suggests magnetoencephalography (MEG) can be used to measure levels of magnetite in the human brain, which may help detect neurodegenerative disorders such as Alzheimer's disease (AD).

Researchers at Massachusetts General Hospital (MGH; Boston, USA) and the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) enrolled 11 male participants (19-89 years of age) who underwent an initial baseline direct current (dc) MEG scan before magnetic resonance imaging (MRI) scanning, both to acquire an image and to magnetize any magnetite particles within their brains. A second dcMEG scan was taken several minutes later to identify changes in the magnetic field, reflecting the size and shape of magnetite particles.

Subsequent alignment of the MEG and MRI images allowed precise localization of the magnetic signals. The results revealed greater accumulation of magnetite in the brains of the oldest volunteers, primarily in and around the hippocampus, replicating post-mortem studies. The rate at which the magnetic signal dissipated--a measure of particle size--was calculated by subsequent dcMEG scans taken from hours to several days later. The study was published on November 20, 2018, in Human Brain Mapping.

“The ability to measure and localize magnetite in the living brain will allow new studies of its role in both the normal brain and in neurodegenerative disease,” said study co-author David Cohen, PhD, of the MGH Martinos Center for Biomedical Imaging Center and MIT. “Studies could investigate whether the amount of magnetite in the hippocampal region could predict the development of Alzheimer's disease and whether treatments that influence magnetite could alter disease progression.”

“Our findings allow in‐vivo measurement of magnetite in the human brain, and possibly open the door for new studies of neurodegenerative diseases of the brain,” concluded lead author Sheraz Khan, PhD, of the MGH Martinos Center for Biomedical Imaging Center. “While this new tool is now ready to be applied in studies of patients with neurodegenerative diseases, several improvements, such as a new magnet specifically built for this purpose, will be required to produce the precise measurements required for accurate diagnosis.”

Magnetite (Fe3O4) particles in the human brain, first reported in 1992, draw strong interest due to their redox activity, strong magnetic behavior, particle surface charge, and Fenton‐like chemistry, which suggest they serve a physiological purpose in the normal brain. It has also been shown that magnetite is strongly associated with several degenerative diseases of the brain, especially AD, in which magnetite nanoparticles were found to be associated with tangles and plaques.

Related Links:
Massachusetts General Hospital
Massachusetts Institute of Technology

Diagnostic Ultrasound System
MS1700C
Portable X-ray Unit
AJEX140H
X-Ray Illuminator
X-Ray Viewbox Illuminators
New
HF Stationary X-Ray Machine
TR20G

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.