We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Hyperspectral Imaging Detects Cancer During Surgery

By MedImaging International staff writers
Posted on 26 Oct 2019
Print article
Image: Dr. Baowei Fei demonstrating HSI of tissue (Photo courtesy of UTD).
Image: Dr. Baowei Fei demonstrating HSI of tissue (Photo courtesy of UTD).
A smart surgical microscope that examines cells at the ultraviolet (UV) and near-infrared (NIR) spectrum could help identify cancer cells in the operating room (OR).

Developed by researchers University of Texas (UT) Southwestern Medical Centre (UTS; Dallas, TX, USA), the University of Texas at Dallas (UTD; Richardson, USA), and other institutions, the reflectance-based hyperspectral Imaging (HSI) and autofluorescence imaging microscope provides a non-ionizing optical imaging modality that can accurately detect and help reduce inadequate surgical margins during squamous cell carcinoma (SCC) within minutes, using deep learning and machine learning tools.

For the study, the researchers examined 102 excised tissue specimens. The tissue specimens were first imaged with reflectance-based HSI and autofluorescence imaging, and afterwards with two fluorescent dyes for comparison. The results showed that reflectance-based HSI and autofluorescence imaging could detect cancer at micrometer resolution, and outperformed both proflavin dye and standard red, green, and blue (RGB) images. Overall, HSU predicted the presence of cancer cells with 80-90% accuracy. The study was published on September 14, 2019, in the journal Cancers.

“We hope that this technology can help surgeons better detect cancer during surgery, reduce operating time, lower medical costs, and save lives. HSI is noninvasive, portable, and does not require radiation or a contrast agent,” concluded senior author Baowei Fei, PhD, EngD, of the UTS department of radiology, and colleagues. “If we have a large database that knows what is normal tissue and what is cancerous tissue, then we can train our system to learn the features of the spectra. Once it's trained, the smart device can predict whether a new sample is a cancerous tissue or not.”

HSI can help acquire large numbers of spectral bands throughout the electromagnetic spectrum (both within and beyond the visual range) with a very fine spatial resolution. So fine, in fact, that for every image pixel a full spectrum of color can be detected. Using this information and complex classification algorithms, it is possible to determine which material or substance is located in each pixel.

Related Links:
University of Texas (UT) Southwestern Medical Centre
University of Texas at Dallas

New
MRI System
Ingenia Prodiva 1.5T CS
Ultrasound Scanner
TBP-5533
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Portable Color Doppler Ultrasound System
S5000

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.