We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Artificial Intelligence Personalizes Musculoskeletal Modeling

By MedImaging International staff writers
Posted on 11 Nov 2019
Print article
Image: Deep learning can identify individual muscles from CT (Photo courtesy of NAIST)
Image: Deep learning can identify individual muscles from CT (Photo courtesy of NAIST)
A new study shows how a deep learning tool can segment individual muscles from computerized tomography (CT) images so as to create a personalized biomechanical model.

Developed by researchers at the Nara Institute of Science and Technology (NAIST; Japan) and Osaka University Graduate School of Medicine (Japan), the new artificial intelligence (AI) tool is based on convolutional neural networks (CNNs) that use U-Net architecture with Monte Carlo dropout, which infers an uncertainty metric, in addition to the segmentation label. By segmenting individual muscles to form a comprehensive model of the musculoskeletal system, people suffering from amyotrophic lateral sclerosis (ALS), for example, can receive a personalized rehabilitation device, and athletes can reach better performance levels.

To evaluate the performance of the proposed method, the researchers used two data sets: 20 fully annotated CTs of the hip and thigh regions, and 18 partially annotated publicly available CTs. They found that Bayesian U-Net had better segmentation accuracy than other methods, including the hierarchical multi-atlas method, which is viewed as state-of-the-art, and did so while reducing the time to train and validate the system by a surgeon. According to the researchers, the accurate patient-specific analysis of individual muscle will aid biomechanical simulation and quantitative evaluation of muscle atrophy. The study was published on September 10, 2019, in IEEE Explore.

“Once we have the CT images, we need to segment the individual muscles for building our model. The challenge in segmenting individual muscles is the low contrast of the imaging at border regions of neighboring muscles,” said lead author Professor Yoshinobu Sato, PhD, of NAIST. “Bayesian U-Net learned the musculoskeletal anatomy to create segmentations that would have been created by experts with high fidelity and our collaborator orthopedic surgeon, Prof. Nobuhiko Sugano of Osaka University Hospital, is quite satisfied with this achievement.”

Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Nara Institute of Science and Technology
Osaka University Graduate School of Medicine


Ultrasound Imaging System
P12 Elite
Radiation Therapy Treatment Software Application
Elekta ONE
New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
New
Mobile Cath Lab
Photon F65/F80

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.