We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Miniature NMR Implant Measures Neuronal Activity

By MedImaging International staff writers
Posted on 17 Dec 2019
Print article
Image: The final functioning NMR probe mounted on a PCB holder (Photo courtesy of MPG)
Image: The final functioning NMR probe mounted on a PCB holder (Photo courtesy of MPG)
A highly sensitive nuclear magnetic resonance (NMR) implant probe enables brain physiology studies with enhanced spatial and temporal resolution.

Developed at the Max-Planck-Institute for Biological Cybernetics (MPG; Tübingen, Germany), the University of Tübingen (Germany), and the University of Stuttgart (Germany), the capillary monolithic probe combines an ultra-sensitive 300 µm coil with a complete NMR transceiver, enabling in vivo measurements of blood oxygenation and flow in nanoliter volumes at a sampling rate of 200 Hz. To minimize the risk of tissue damage during probe insertion, the multimodal probe possesses a needle-shape with shaft widths of 50-300 μm and shaft thicknesses below 100 μm.

The result is a complementary meta-oxide-semiconductor (CMOS) probe with the versatility of brain imaging technique that analyzes specific neuronal activity of the brain. According to the researchers, the design setup will allow scalable solutions by expanding the collection of data from more than a single area, but on the same device. The scalability will allow the use of other sensing modalities as well, such as electrophysiological, optogenetic, proton spectroscopy, and 31P spectroscopy measurements with high spatial resolution. The study was published on November 25, 2019 in Nature Methods.

“The integrated design of a nuclear magnetic resonance detector on a single chip supremely reduces the typical electromagnetic interference of magnetic resonance signals,” said senior author Klaus Scheffler, PhD, of the MPG department of high-field magnetic resonance. “This enables neuroscientists to gather precise data from minuscule areas of the brain, and to combine them with information from spatial and temporal data of the brain's physiology.”

The researchers suggest the system will allow the capture of localized activity within single layers, and preferably within regions of different cellular components, such as dendrites. In addition, it will allow the assessment of neurovascular coupling on a fine time scale, enabling extremely fast coupling that can help resolve correlations between electrical signals and proton magnetization changes, far below the commonly assumed time lag of several seconds.

Related Links:
Max-Planck-Institute for Biological Cybernetics
University of Tübingen
University of Stuttgart


NMUS & MSK Ultrasound
InVisus Pro
New
HF Stationary X-Ray Machine
TR20G
Radiology Software
DxWorks
40/80-Slice CT System
uCT 528

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.