We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Finite Element Analysis Helps Predict Spinal Fractures

By MedImaging International staff writers
Posted on 01 Jan 2020
Print article
Image:  Finite analysis can help determine cervical bone strength (Photo courtesy of SUTD)
Image: Finite analysis can help determine cervical bone strength (Photo courtesy of SUTD)
A new study introduces a novel vertebral strength assessment tool that can assist accurate prediction of osteoporotic vertebral fracture (OVF) risk.

Developed at the Singapore University of Technology and Design (SUTD) and Munich Technical University (TUM; Germany), the semi-automatic computational tool is designed to extract structural information, such as failure load, from radiological scans of patients using functional spinal units (FSUs). The calculated FSU predicted failure load was compared to the bone mineral density (BMD) values of the single central vertebra with experimentally measured failure load in order to assess finite element (FE) correlation.

To do so, the FSUs underwent clinical multi-detector computed tomography (MDCT), and BMD was then determined for the FSUs from the MDCT images of the central vertebrae. FE-predicted failure load was then calculated in the single central vertebra alone, and the entire FSUs. The results revealed that while BMD of the central vertebrae correlated significantly with experimentally measured failure load, the FE-predicted failure load of the central vertebra showed no significant correlation. However, FE-predicted failure load of the FSUs best predicted experimentally measured failure load. The study was published on December 10, 2019, in Spine.

“There is an urgent need to implement computational biomechanical analysis in the clinical scenario, since it is a powerful tool for non-invasive evaluation of bone strength,” said senior author Subburaj Karupppasamy, PhD, of the SUTD Medical Engineering and Design (MED) laboratory. “Accordingly, this work lays the foundation towards extracting valuable structural information from improved spine models, such as FSUs, in the diagnosis of osteoporosis and prediction of OVFs.”

Computational prediction of failure load through numerical simulation, known popularly as FE analysis, is a non-invasive tool for examination of the spine, which also provides a holistic quantitative evaluation of bone strength. As the spine consists of many different spinal segments, it is essential to include these all load-bearing segments when considering the structural strength of spine. FSUs have the advantage of mimicking the biomechanical requirements of the spine better than each isolated vertebral segment.

Related Links:
Singapore University of Technology and Design
Munich Technical University


Wall Fixtures
MRI SERIES
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
Ultrasonic Pocket Doppler
SD1
Diagnostic Ultrasound System
MS1700C

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.