We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Imaging and AI Aid Intraoperative Brain Tumor Diagnosis

By MedImaging International staff writers
Posted on 15 Jan 2020
Print article
Image: Localization of metastatic brain tumor infiltration in SRH images (Photo courtesy of MGH)
Image: Localization of metastatic brain tumor infiltration in SRH images (Photo courtesy of MGH)
A workflow that combines advanced optical imaging with an artificial intelligence (AI) algorithm may accurately diagnose brain tumors in real time in the operating room, according to a new study.

Developed at the University of California, San Francisco (UCSF; USA), the University of Michigan (U-M; Ann Arbor, USA), Columbia University (New York, NY, USA), and other institutions, the novel parallel workflow combines stimulated Raman histology (SRH, a label-free optical imaging method), and deep convolutional neural networks (CNNs) to predict diagnosis in near real time in an automated fashion. The CNNs, which were trained on over 2.5 million SRH images, built a hierarchy of recognizable histologic feature representations to help classify the major histopathologic classes of brain tumors.

The new workflow can diagnose brain tumors in less than 150 seconds, an order of magnitude faster than conventional histology techniques, which take 20–30 minutes. The authors also prospectively tested the workflow in a clinical trial of 278 patients with brain tumors, which demonstrated that the accuracy of CNN-based diagnosis of SRH images (94.6%) was slightly higher than pathologist-based interpretation of conventional histologic images (93.9%). The study was published on January 6, 2020, in Nature Medicine.

"As surgeons, we're limited to acting on what we can see; this technology allows us to see what would otherwise be invisible, to improve speed and accuracy in the operating room, and reduce the risk of misdiagnosis,” concluded lead author Todd Hollon, MD, of U-M, and colleagues. “Intraoperative cancer diagnosis can be streamlined, creating a complementary pathway for tissue diagnosis independent of a traditional pathology laboratory. With this imaging technology, cancer operations are safer and more effective than ever before.”

Related Links:
University of California, San Francisco
University of Michigan
Columbia University


NMUS & MSK Ultrasound
InVisus Pro
Portable Color Doppler Ultrasound Scanner
DCU10
New
Portable X-ray Unit
AJEX140H
New
Portable HF X-Ray Machine
PORTX

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.