We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




CT Analysis Algorithms Highly Accurate in COVID-19 Detection

By MedImaging International staff writers
Posted on 12 May 2020
Print article
Image: AI can aid radiologists rapidly detect COVID-19 (Photo courtesy of RADLogics)
Image: AI can aid radiologists rapidly detect COVID-19 (Photo courtesy of RADLogics)
A novel artificial intelligence (AI) algorithm supports chest computed tomography (CT) imaging for COVID-19 patients.

The RADLogics (Tel Aviv, Israel) algorithms apply machine learning image analysis and interpretation to automatically detect, quantify, and track COVID-19 via non-contrast thoracic CT exams. The AI-based image analysis outputs a suggested “corona score” in order to measure progression of a patients’ disease. For time analysis, the algorithm measures smaller opacities and visualizes larger opacities in a slice-based heat map or in a three dimensional (3D) volume display. The algorithms are easily integrated in both in-house and via a workflow platform that uses Amazon Web Services (AWS) to process up to one million CT studies per day.

In a study involving 157 patients with and without COVID-19 at Mount Sinai Health System (New York, NY, USA) and other institutions, the CT image analysis algorithms, developed from multiple international datasets, were able to differentiate COVID-19 with 98.2% sensitivity and 92.2% specificity. According to the researchers, rapidly screening and evaluating high volumes of thoracic CT imaging studies can assist healthcare systems by augmenting radiologists and acute care teams that could be overwhelmed with patients.

“We’ve seen incredibly strong demand from healthcare systems and providers around the world. Our system has enabled these hospitals to enhance their ability to manage symptomatic patients, especially those with severe or worsening respiratory status,” said Moshe Becker, CEO and co-founder of RADLogics. “Our solution improves patient care by providing doctors with a ‘Corona Score’ that provides clinicians automatic measurements of disease extent of COVID-19 patients, allowing doctors to better manage a patient’s treatment.”

“Current epidemics are calling for new healthcare management approaches, and effective clinical management depends more on disease severity than on the virus identification,” said Sergey Morozov, MD, PhD, MPH, CEO of the Moscow Diagnostics and Telemedicine Center (Russia). “We are looking forward to integrating RADLogics’ AI-powered solution across our hospital network throughout Moscow where imaging plays a crucial role in patient management, specifically chest CT. It allows defining symptomatic patients and stratifying them into mild, moderate, and severe disease burden groups.”

COVID-19 typically manifests with bilateral ground-glass and consolidative pulmonary opacities on CT. Nodular opacities, crazy-paving pattern, and a peripheral distribution of disease may be additional features helpful in early diagnosis. On the other hand, lung cavitation, discrete pulmonary nodules, pleural effusions, and lymphadenopathy are characteristically absent.

Related Links:
RADLogics

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
40/80-Slice CT System
uCT 528
New
Opaque X-Ray Mobile Lead Barrier
2594M
New
3T MRI Scanner
MAGNETOM Cima.X

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.