We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Reconstructed Medical Images May Be Unreliable

By MedImaging International staff writers
Posted on 16 Jun 2020
Print article
Image: Images with small structural perturbations (text and symbols) reconstructed with AI (Photo courtesy of PNAS)
Image: Images with small structural perturbations (text and symbols) reconstructed with AI (Photo courtesy of PNAS)
A new study suggest that the deep learning tools used to create high-quality images from short scan times produce multiple alterations and artefacts in the data that could affect diagnosis.

Researchers at the University of Oslo (Norway), the University of Cambridge (United Kingdom), and other institutions conducted a study to test six different artificial intelligence (AI) neural networks trained to create enhanced images from magnetic resonance imaging (MRI) or computerized tomography (CT) scans. The networks were fed data designed to replicate three possible issues: tiny perturbations; small structural changes; and changes in the sampling rate compared with the data on which the AI was trained on. To test the ability of the systems to detect small structural changes, the team added letters and symbols from playing cards to the images.

The results showed that only one of the networks was able to reconstruct these details, but the other five presented issues ranging from blurring to almost complete removal of the changes. Only one of the neural networks produced better images as the researchers increased the sampling rate of the scans. Another network stagnated, with no improvement in quality; and in three, the reconstructions dropped in quality as the number of samples increased. The sixth AI system did not allow the sampling rate to be changed. The study was published on May 11, 2020, in the Proceedings of the National Academy of Sciences (PNAS).

“You take a tiny little perturbation and the AI system says the image of the cat is suddenly a fire truck; researchers need to start testing the stability of these systems. What they will see on a large scale is that many of these AI systems are unstable,” said senior author Anders Hansen, PhD, of the University of Cambridge. “The big, big, problem is that there is no mathematical understanding of how these AI systems work. They become a black box, and if you don’t test these things properly you can have completely disastrous outcomes.”

Instabilities during scanning can appear as certain tiny, almost undetectable perturbations (for example due to patient movement, that appear in both the image and sampling domain, resulting in artefacts in the reconstruction; as small structural changes, for example, a tumor, that may not be captured in the reconstructed image; and differing sampling rates that do not coincide with the data on which the AI algorithm was trained.

Related Links:
University of Oslo
University of Cambridge


New
Portable HF X-Ray Machine
PORTX
New
MRI System
Ingenia Prodiva 1.5T CS
New
X-ray Diagnostic System
FDX Visionary-A
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.