We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Study Maps Out the Intracardiac Nervous System

By MedImaging International staff writers
Posted on 18 Jun 2020
Print article
Image: Nerve cells (yellow) cluster around the top of the 3D reconstructed rat heart (Photo courtesy of S. Achanta et al/ iScience)
Image: Nerve cells (yellow) cluster around the top of the 3D reconstructed rat heart (Photo courtesy of S. Achanta et al/ iScience)
Using a new imaging method called knife-edge scanning microscopy, a three-dimensional (3D) model of the rat heart anatomy, including the intracardiac nervous system (ICN), has been created.

Researchers at Thomas Jefferson University (TJU; Philadelphia, PA, USA), Strateos (San Francisco, CA, USA), and other institutions developed and integrated several distinct technologies, including whole-organ imaging and software development, in order to support precise 3D neuroanatomical mapping and molecular phenotyping of the ICN. By precisely integrating anatomical and molecular data in the digitally reconstructed whole heart, the nervous network could be elucidated in 3D with micron scale resolution.

The resulting atlas shows the full extent and position of neuronal clusters on the base and posterior left atrium of the rat heart, and the distribution of molecular phenotypes that are defined along the base-to-apex axis, which had not been previously described. The data also helped sort the heart’s neurons into discrete groups, with most of the neuron clusters dotting the area on the coronal aspect of the heart, where blood vessels come in and out. Other clusters spread down the posterior section of the heart, and were particularly abundant on the left side. The study was published on May 26, 2020, in iScience.

“Our work provides a model to precisely integrate anatomical and molecular data in the 3D digitally reconstructed whole heart with high resolution at the micron scale,” said senior author systems biologist James Schwaber, PhD, of TJU. “The comprehensive, 3-D map of the heart’s little brain could ultimately lead to targeted therapies that could treat or prevent heart diseases.”

The complex ICN system consists of a network of ganglionic plexuses and interconnecting ganglions and axons. Each ganglionic plexus contains numerous intracardiac ganglia that operate as local integration centers, modulating the intricate autonomic interactions between the extrinsic and ICN systems. The current understanding is that the ICN modulates a range of cardiac physiological functions, including chronotropy, dromotropy, inotropy, and lusitropy.

Related Links:
Thomas Jefferson University
Strateos


New
Ultrasound Needle Guide
Ultra-Pro 3
Radiology Software
DxWorks
Ultrasonic Pocket Doppler
SD1
New
Radiation Shielding
Oversize Thyroid Shield

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.