We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3D Imaging Offers Insights on Lung Involvement in COVID-19

By MedImaging International staff writers
Posted on 01 Sep 2020
Print article
Image: 3D reconstruction around a pulmonary alveolus with hyaline membrane (yellow) (Photo courtesy of Tim Salditt/ University of Göttingen)
Image: 3D reconstruction around a pulmonary alveolus with hyaline membrane (yellow) (Photo courtesy of Tim Salditt/ University of Göttingen)
A novel three-dimensional (3D) imaging technique enables high resolution representation of damaged lung tissue following severe Covid-19.

The new technique, developed at the University of Göttingen (Germany) and the Medical University of Hannover (MHH; Germany), is based on multi-scale phase contrast x-ray tomography, allows virtual histology and histopathology autopsy of the parenchymal architecture of unstained lung tissue from patients who succumbed to Covid-19. By combining parallel and cone beam geometry, autopsy samples with a maximum cross section of 4mm can be scanned and reconstructed at a resolution and image quality which allows for the segmentation of individual cells.

By using the zoom capability of the cone beam geometry, regions-of-interest are reconstructed with a minimum voxel size of 167 nm. In a proof-of-concept study, the researchers showed the capabilities of the new approach by visualizing diffuse alveolar damage (DAD), including prominent hyaline membrane formation, via mapping the 3D distribution and density of lymphocytes infiltrating the tissue, and by providing histograms of characteristic distances from tissue interior to the closest air compartment. The study was published on August 20, 2020, in eLife.

“Using zoom tomography, large areas of lung tissue embedded in wax can be scanned, enabling detailed examination to locate particularly interesting areas around inflammation, blood vessels, or bronchial tubes,” said lead author Professor Tim Salditt, PhD, of the University of Göttingen Institute of X-ray Physics. “Since X-rays penetrate deep into tissue, this enables scientists to understand the relation between the microscopic tissue structure and the larger functional architecture of an organ. This is important, for example, to visualize the tree of blood vessels down to the smallest capillaries.”

3D imaging via computerized tomography (CT) is not sufficient to detect tissue structure at cellular or sub-cellular resolution. The researchers therefore used phase contrast tomography, which exploits the different propagation velocities of X-rays in tissue to generate an intensity pattern. Special illumination optics and algorithms were then used to reconstruct sharp images from these patterns. This allowed examination of lung tissue at scalable size and resolution, yielding both larger overviews and close-up reconstructions.

Related Links:
University of Göttingen
Medical University of Hannover


NMUS & MSK Ultrasound
InVisus Pro
X-Ray Illuminator
X-Ray Viewbox Illuminators
Wall Fixtures
MRI SERIES
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.