We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Combines CT Images with Non-Imaging Data to Accurately Predict COVID-19 Patient Outcomes

By MedImaging International staff writers
Posted on 24 Nov 2020
Print article
Illustration
Illustration
A team of engineers at the Rensselaer Polytechnic Institute (Troy, NY, USA) has demonstrated how a new algorithm they developed was able to successfully predict whether or not a COVID-19 patient would need ICU intervention.

With communities across the nation experiencing a wave of COVID-19 infections, clinicians need effective tools that will enable them to aggressively and accurately treat each patient based on their specific disease presentation, health history, and medical risks. The artificial intelligence-based approach could be a valuable tool in determining a proper course of treatment for individual patients.

The research team developed this method by combining chest computed tomography (CT) images that assess the severity of a patient’s lung infection with non-imaging data, such as demographic information, vital signs, and laboratory blood test results. By combining these data points, the algorithm is able to predict patient outcomes, specifically whether or not a patient will need ICU intervention. The algorithm was tested on datasets collected from a total of 295 patients from three different hospitals - one in the US, one in Iran, and one in Italy. Researchers were able to compare the algorithm’s predictions to what kind of treatment a patient actually ended up needing. The researchers will now integrate their new algorithm with another developed previously to assess a patient’s risk of cardiovascular disease using chest CT scans.

“We know that a key factor in COVID mortality is whether a patient has underlying conditions and heart disease is a significant comorbidity,” said Pingkun Yan, an assistant professor of biomedical engineering at Rensselaer Polytechnic Institute who led the research team. “How much this contributes to their disease progress is, right now, fairly subjective. So, we have to have a quantification of their heart condition and then determine how we factor that into this prediction.”

Related Links:
Rensselaer Polytechnic Institute

Radiology Software
DxWorks
Radiation Therapy Treatment Software Application
Elekta ONE
Ultrasound Imaging System
P12 Elite
New
Digital Radiography System
DigiEye 330

Print article

Channels

Ultrasound

view channel
Image: Artificial intelligence can improve ovarian cancer diagnoses (Photo courtesy of 123RF)

AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images

Ovarian tumors are commonly found, often by chance. In many regions, there is a significant shortage of ultrasound specialists, which has raised concerns about unnecessary medical interventions and delayed... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.