We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Based Mammography Triage Software Helps Dramatically Improve Interpretation Process

By MedImaging International staff writers
Posted on 11 Oct 2021
Print article
Illustration
Illustration

An artificial intelligence (AI)-based mammography triage software is helping dramatically improve the interpretation process for healthcare providers.

In a new study, researchers at the Scripps Green Hospital (La Jolla, CA, USA) showed how the use of an AI-based computer-aided detection (CAD) and triage software suite improved the mammographic interpretation process at an imaging center and its partners. Mammographic results can be delayed for many reasons, including physician shortages. Many women experience anxiety waiting for their mammographic results, with 97% of women in one study reporting that immediate results would lower anxiety.

The AI software that aids in detection and triage of clinical concerns was first implemented in June 2019 at a single outpatient site utilizing 2D digital mammography. The AI software evaluated all imaging exams as soon as they were completed, triaging any suspicious findings into a sortable worklist and notifying the physicians. While integrating the AI tool into the imaging centers’ picture archiving and communication system was “unproblematic”, radiologist buy-in proved to be a challenge as physicians experienced fears of being replaced, distrust and hesitancy in learning the new approach.

The study showed that post the implementation of the AI tool, the average turnaround times declined from around 9.6 days based on 2019 data to 3.9 days in 2021. Among BI-RADS (Breast Imaging-Reporting and Data System) category 0 patients, the average turnaround times fell from 9.4 days (with a range of 1-33) to 4.7 days (0-22). Exams with suspicious findings were usually interpreted within one day, with fewer left for outside comparisons. There was also a decline of 71% in flags per examination when using AI from 2.26 per exam to 0.65, marking a “comparable and significant” reduction for both masses (down 72%) and calcifications (70%).

“Despite initial skepticism, a verbal survey of the interpreting radiologists performed two years after implementation showed universal preference for the AI-[computer-aided detection] compared with traditional CAD, the value of which has been questioned,” the researchers wrote. “Furthermore, the use of triage is now seen as the preferred way to manage their work lists,” indicating the “perception of greater ease” when reading batched mammograms.

Related Links:
Scripps Green Hospital 

Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
Opaque X-Ray Mobile Lead Barrier
2594M
Radiology Software
DxWorks
Multi-Use Ultrasound Table
Clinton

Print article

Channels

Ultrasound

view channel
Image: Artificial intelligence can improve ovarian cancer diagnoses (Photo courtesy of 123RF)

AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images

Ovarian tumors are commonly found, often by chance. In many regions, there is a significant shortage of ultrasound specialists, which has raised concerns about unnecessary medical interventions and delayed... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.