We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrafast Timing Enables Reconstruction-Free PET Imaging

By MedImaging International staff writers
Posted on 18 Nov 2021
Print article
Image: Coupled Cherenkov photon detectors scanning a sample (Photo courtesy of Simon Cherry/ UCD)
Image: Coupled Cherenkov photon detectors scanning a sample (Photo courtesy of Simon Cherry/ UCD)
An experimental technique based on Cherenkov photon detection could create cross-sectional images without the need for tomographic reconstruction, according to a new study.

Under development at the University of California Davis (UCD; USA), Hamamatsu Photonics (Japan), the University of Fukui (Japan), and other institutions, the new technique is based on the theory that if detected fast enough, back-to-back annihilation of photons can be directly localized in 3D space using time-of-flight information without tomographic reconstruction. Until now this has not been possible, as photon detectors were too slow to precisely pinpoint their location based on time shifts.

The researchers successfully developed new Cherenkov photon detector technology that when combined with a convolutional neural network (CNN) for timing estimation, resulted in an average timing precision of 32 ps (corresponding to a spatial precision of 4.8 mm), which they consider is sufficient to produce cross-sectional images of a positron-emitting radionuclide directly from the detected coincident annihilation photons, without the need for further tomographic reconstruction algorithms. The study was published on October 14, 2021, in Nature Photonics.

“We're literally imaging at the speed of light, which is something of a holy grail in our field. Images can also be created more quickly with this method, potentially even in real time during the PET scan, as no after-the-fact reconstruction is needed,” concluded senior author Professor Simon Cherry, PhD, of UCD, and colleagues. “This new discovery involves a compact equipment setup, and could lead to inexpensive, easy and accurate scans of the human body using radioactive isotopes.”

In positron emission tomography (PET) scans, molecules tagged with trace amounts of a radioactive isotope are injected in the body. The unstable isotope emits positrons as it decays; whenever one of these positrons encounters an electron in the body, they annihilate each other and simultaneously give off two annihilation photons. Tracking the origin and trajectory of the photons creates an image of the tissues tagged with isotopes. But till now, tomographic reconstruction was required, as the detection process was too slow.

Related Links:
University of California Davis
Hamamatsu Photonics
University of Fukui


Radiation Therapy Treatment Software Application
Elekta ONE
40/80-Slice CT System
uCT 528
Mobile Barrier
Tilted Mobile Leaded Barrier
Opaque X-Ray Mobile Lead Barrier
2594M

Print article

Channels

Ultrasound

view channel
Image: Artificial intelligence can improve ovarian cancer diagnoses (Photo courtesy of 123RF)

AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images

Ovarian tumors are commonly found, often by chance. In many regions, there is a significant shortage of ultrasound specialists, which has raised concerns about unnecessary medical interventions and delayed... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.