We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Deep Learning-Powered Automated System Detects COVID-19 Lesions by Analyzing CT Chest Scans

By MedImaging International staff writers
Posted on 03 Dec 2021
Print article
Image: Thoracic computed tomography scans with COVID-19 lesions (Photo courtesy of Universitat de Barcelona)
Image: Thoracic computed tomography scans with COVID-19 lesions (Photo courtesy of Universitat de Barcelona)

A new automated system that involves deep learning technology enables the detection of COVID-19 lesion via the analysis of a computed tomography (CT) scan.

The functioning of the system developed by researchers at Universitat de Barcelona (UB; Barcelona, Spain) consists of “a first phase of lung segmentation with the CT scan to reduce the searching area,” said Giuseppe Pezzano, researcher at the UB and the principal researcher of the study. “Then, an algorithm is used to analyze the lung area and detect the presence of COVID-19. If it tests positive, the image is processed to identify the areas that are affected by the disease.” The study “has enabled us to verify the efficiency of the system as a support tool for decision-making for health professionals in their COVID-19 detection task, and for measuring the gravity, the extension and the evolution of the pneumonia caused by SARS-CoV-2, in the mid and long term,” noted Pezzano.

The algorithm has been tested in 79 volumes and 110 sections of CTs which had detected COVID-19 infection, obtained in three open-access image repositories. The researchers achieved an average accuracy for the segmentation of lesions caused by the virus of about 99%, without false positives being observed during the identification. The method uses an innovative way to calculate the mask of segmentation of medical images, which provided good results in the segmentation of nodules in the tomography images.

Some recently published studies “show that deep learning and computing vision algorithms have achieved a better precision than the experts’ cancer detection in mammograms, prediction of strokes and heart attacks,” said Petia Radeva, professor at the Department of Mathematics and Computer Science of the UB. “We could not be left behind and therefore we have worked on this technology to help doctors fight COVID-19 by offering them high-precision data for the analysis of medical images in an objective, transparent and robust way.”

“This type of automated system represents an important tool for health professionals in order to make more robust and accurate diagnoses, since it can provide information a human being could not measure,” added Oliver Díaz, lecturer at the Department of Mathematics and Computer Science of the UB.

Related Links:
Universitat de Barcelona 

Multi-Use Ultrasound Table
Clinton
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
New
Diagnostic Ultrasound System
MS1700C
New
X-ray Diagnostic System
FDX Visionary-A

Print article

Channels

Ultrasound

view channel
Image: Artificial intelligence can improve ovarian cancer diagnoses (Photo courtesy of 123RF)

AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images

Ovarian tumors are commonly found, often by chance. In many regions, there is a significant shortage of ultrasound specialists, which has raised concerns about unnecessary medical interventions and delayed... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.