We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Shows Promising Results for Cancer Detection with Mammographic Screening

By MedImaging International staff writers
Posted on 30 Mar 2022
Print article
Image: AI shows potential in breast cancer screening programs (Photo courtesy of Unsplash)
Image: AI shows potential in breast cancer screening programs (Photo courtesy of Unsplash)

Mammograms acquired through population-based breast cancer screening programs produce a significant workload for radiologists. Artificial intelligence (AI) has been proposed as an automated second reader for mammograms that could help reduce this workload. The technology has shown encouraging results for cancer detection, but evidence related to its use in real screening settings is limited. Now, a major new study has shown that AI is a promising tool for breast cancer detection in screening mammography programs.

The new study - the largest of its kind to date, led by researchers at the Cancer Registry of Norway (Oslo, Norway), compared the performance of a commercially available AI system with routine independent double reading as performed in a population-based screening program. The study drew from almost 123,000 examinations performed on more than 47,000 women at four facilities in BreastScreen Norway, the nation’s population-based screening program. The dataset included 752 cancers detected at screening and 205 interval cancers, or cancers detected between screening rounds. The AI system predicted the risk of cancer on a scale from 1 to 10, with 1 representing the lowest risk and 10 the highest risk. A total of 87.6% (653 of 752) of screen-detected and 44.9% (92 of 205) of interval cancers had the highest AI score of 10.

The researchers created three thresholds to assess the performance of the AI system as a decision-making tool. Using a threshold that mirrors the average individual radiologist rate of positive interpretation, the proportion of screen-detected cancers not selected by the AI system was less than 20%. While the AI system performed well, the study’s reliance on retrospective data means that more research is needed. The results showed favorable histopathologic characteristics associated with a better prognosis for screening-detected cancers with low versus high AI scores. Opposite results were observed for interval cancers. This may indicate that interval cancers with low AI scores are true interval cancers not visible on the screening mammograms.

The high percentage of true negative examinations classified with a low AI score has the potential of substantially reducing the interpretive volume, while allowing only a small proportion of cancers to go undetected. By using AI as one of the two readers in a double reading setting, the radiologist could still identify these cancers, the researchers said. Although more study is needed before clinical implementation of AI in breast cancer screening, the results of the study help establish a basis for future research, including prospective studies, according to the researchers.

“In our study, we assumed that all cancer cases selected by the AI system were detected,” said Solveig Hofvind, Ph.D., from the Section for Breast Cancer Screening, Cancer Registry of Norway. “This might not be true in a real screening setting. However, given that assumption, AI will probably be of great value in interpretation of screening mammograms in the future.”

“Based on our results, we expect AI to be of great value in the interpretation of screening mammograms in the future,” Dr. Hofvind added. “We expect the greatest potential to be in reducing the reading volume by selecting negative examinations.”

Related Links:
Cancer Registry of Norway 

Radiology Software
DxWorks
Radiation Therapy Treatment Software Application
Elekta ONE
New
Digital X-Ray Detector Panel
Acuity G4
New
MRI System
Ingenia Prodiva 1.5T CS

Print article

Channels

Ultrasound

view channel
Image: Artificial intelligence can improve ovarian cancer diagnoses (Photo courtesy of 123RF)

AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images

Ovarian tumors are commonly found, often by chance. In many regions, there is a significant shortage of ultrasound specialists, which has raised concerns about unnecessary medical interventions and delayed... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.