We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Can Predict Need for CT in Pediatric Patients After Mild Traumatic Brain Injury

By MedImaging International staff writers
Posted on 06 Apr 2022
Print article
Image: Deep neural networks can predict the need for CT in pediatric mild traumatic brain injury (Photo courtesy of Unsplash)
Image: Deep neural networks can predict the need for CT in pediatric mild traumatic brain injury (Photo courtesy of Unsplash)

Only 10% of CT scans unveil positive findings in mild traumatic brain injury, raising concerns of its overuse in this population. A number of clinical rules have been developed to address this issue, but they still suffer limitations in their specificity. Machine learning models have been applied in limited studies to mimic clinical rules; however, further improvement in terms of balanced sensitivity and specificity is still needed. In a new study, researchers have found that deep neural networks can be uesd to predict the need for CT in pediatric mild traumatic brain injury.

For their study, researchers at The University of Queensland (Brisbane, Australia) applied a deep artificial neural networks (DANN) model and an instance hardness threshold algorithm to reproduce the Pediatric emergency Care Applied Research Network (PECARN) clinical rule in a pediatric population collected as a part of the PECARN study between 2004 and 2006. The DANN model was applied using 14,983 patients younger than 18 years with Glasgow Coma Scale scores ≥ 14 who had head CT reports. The clinical features of the PECARN rules, PECARN-A (group A, age < 2 years) and PECARN-B (group B, age ≤ 2 years), were used to directly evaluate the model. The average accuracy, sensitivity, precision, and specificity were calculated by comparing the model’s prediction outcome to that reported by the PECARN investigators. The instance hardness threshold and DANN model were applied to predict the need for CT in pediatric patients using fivefold cross-validation.

Based on the findings, the researchers concluded that a DANN model achieved comparable sensitivity and outstanding specificity for replicating the PECARN clinical rule and predicting the need for CT in pediatric patients after mild traumatic brain injury compared with the original statistically derived clinical rule.

Related Links:
The University of Queensland 

Ultra-Flat DR Detector
meX+1717SCC
New
Digital X-Ray Detector Panel
Acuity G4
New
Diagnostic Ultrasound System
MS1700C
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits

Print article

Channels

Ultrasound

view channel
Image: Artificial intelligence can improve ovarian cancer diagnoses (Photo courtesy of 123RF)

AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images

Ovarian tumors are commonly found, often by chance. In many regions, there is a significant shortage of ultrasound specialists, which has raised concerns about unnecessary medical interventions and delayed... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.