We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Fuses CT and MRI Scans for Improved Clinical Diagnosis

By MedImaging International staff writers
Posted on 30 Jun 2023
Print article
Image: Technique combines hard bone structures of CT scan with soft tissue detail of MRI image (Photo courtesy of Freepik)
Image: Technique combines hard bone structures of CT scan with soft tissue detail of MRI image (Photo courtesy of Freepik)

Computed tomography (CT) imaging uses X-ray technology to take detailed cross-sectional images of the body, which are then converted into a 3D visualization of bone structures that are opaque to X-rays. On the other hand, magnetic resonance imaging (MRI) uses powerful magnetic fields and radio waves to generate precise images of soft tissues such as organs or damaged tissues. Combining these two techniques could offer healthcare professionals a more holistic view of a patient's anatomy, uncovering hidden aspects of their health issues. Now, new research has demonstrated how artificial intelligence (AI) can be utilized to combine images from clinical X-ray CT and MRI scans.

The new method, known as the Dual-Branch Generative Adversarial Network (DBGAN), has been developed by researchers at Queen Mary University of London (London, UK) and Shandong University of Technology (Zibo, China) holds the potential for enabling a clearer and more clinically valuable interpretation of CT and MRI scans. This technique effectively merges the rigid bone structures from the CT scan with the detailed soft tissue imaging from the MRI. This development could enhance clinical diagnosis and patient care for a multitude of conditions where such scans are commonly used but exhibit limitations when utilized separately.

DBGAN is an advanced AI approach based on deep-learning algorithms, featuring a dual-branch structure with multiple generators and discriminators. The generators produce fused images that blend the key features and additional information from CT and MRI scans. The discriminators evaluate the quality of the generated images by comparing them to real images and filtering out lower-quality ones until a high-quality fusion is achieved. This generative adversarial interaction between generators and discriminators enables the efficient and realistic fusion of CT and MRI images, minimizing artifacts and maximizing visual information.

The dual nature of DBGAN includes a multi-scale extraction module (MEM) which focuses on extracting key features and detailed information from the CT and MRI scans and a self-attention module (SAM) which highlights the most relevant and unique features in the fused images. Comprehensive testing of the DBGAN approach has shown its performance to be superior as compared to existing techniques in terms of image quality and diagnostic accuracy. As CT and MRI scans each have their own strengths and weaknesses, the application of AI can help radiographers to synergistically combine both types of scans, maximizing their strengths and eliminating their weaknesses.

Related Links:
Queen Mary University of London 
Shandong University of Technology 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
3T MRI Scanner
MAGNETOM Cima.X
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Fixed X-Ray System (RAD)
Allengers 325 - 525

Print article

Channels

MRI

view channel
Image: MRI microscopy of mouse and human pancreas with respective histology demonstrating ability of DTI maps to identify pre-malignant lesions (Photo courtesy of Bilreiro C, et al. Investigative Radiology, 2024)

Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time

Pancreatic cancer is the leading cause of cancer-related fatalities. When the disease is localized, the five-year survival rate is 44%, but once it has spread, the rate drops to around 3%.... Read more

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.