We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Research Shows AI Can Ask another AI for Second Opinion on Medical Scans

By MedImaging International staff writers
Posted on 26 Jul 2023
Print article
Image: AI-annotated medical image showing enhanced tumor, tumor core and edema regions (Photo courtesy of Monash University)
Image: AI-annotated medical image showing enhanced tumor, tumor core and edema regions (Photo courtesy of Monash University)

The field of medical artificial intelligence has made remarkable strides thanks to deep learning. However, training these deep-learning models typically requires vast amounts of annotated data. This process of annotating large datasets is not only labor-intensive but also susceptible to human biases, especially for dense prediction tasks like image segmentation. Taking inspiration from semi-supervised algorithms, which utilize both labeled and unlabeled data for training, researchers have created a novel co-training AI algorithm for medical imaging that mimics the process of seeking a second opinion.

The research by scientists at Monash University (Melbourne, VIC, Australia) tackles the challenge of limited availability of human-annotated or labeled medical images by adopting an adversarial, or competitive, learning approach towards unlabeled data. This groundbreaking research is expected to push the boundaries of medical image analysis for radiologists and other healthcare experts. Manually annotating a large number of medical images demands considerable time, effort, and expertise, which often limits the availability of large-scale annotated medical image datasets. The algorithm designed by these researchers enables multiple AI models to harness the unique strengths of both labeled and unlabeled data, learning from each other's predictions to enhance overall accuracy. The next stage of the research will focus on broadening the application to accommodate various types of medical images and developing a dedicated end-to-end product for use in radiology practices.

“Our algorithm has produced groundbreaking results in semi-supervised learning, surpassing previous state-of-the-art methods. It demonstrates remarkable performance even with limited annotations, unlike algorithms that rely on large volumes of annotated data,” said Ph.D. candidate Himashi Peiris of the Faculty of Engineering at Monash University. “This enables AI models to make more informed decisions, validate their initial assessments, and uncover more accurate diagnoses and treatment decisions.”

Related Links:
Monash University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Imaging System
P12 Elite
Ultra-Flat DR Detector
meX+1717SCC
New
Gold Member
X-Ray QA Meter
T3 RG Pro

Print article

Channels

MRI

view channel
Image: MRI microscopy of mouse and human pancreas with respective histology demonstrating ability of DTI maps to identify pre-malignant lesions (Photo courtesy of Bilreiro C, et al. Investigative Radiology, 2024)

Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time

Pancreatic cancer is the leading cause of cancer-related fatalities. When the disease is localized, the five-year survival rate is 44%, but once it has spread, the rate drops to around 3%.... Read more

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.