We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Routine CT Screening Can Identify Individuals at Risk of Type 2 Diabetes

By MedImaging International staff writers
Posted on 07 Aug 2024
Print article
Image: Automated multiorgan CT analysis identified individuals at high risk of diabetes and associated conditions (Photo courtesy of Shutterstock)
Image: Automated multiorgan CT analysis identified individuals at high risk of diabetes and associated conditions (Photo courtesy of Shutterstock)

The growing prevalence of diabetes and its complications has created the need for exploring advanced diagnostic methods that can improve early detection and risk assessment. Now, a new study has demonstrated how CT scans, typically used for health screenings, can also be utilized to identify individuals at risk for type 2 diabetes. This concept, known as opportunistic imaging, leverages routine imaging data to gain insights into a patient’s overall health, enhancing the value of CT scans beyond their traditional use.

In this study conducted at Sungkyunkwan University School of Medicine (Seoul, South Korea), researchers assessed the predictive power of automated CT-derived markers for diabetes and its related conditions. The cohort consisted of 32,166 adults, aged 25 and older, who underwent health screenings that included 18F-fluorodeoxyglucose (18F-FDG) PET/CT scans. Advanced deep learning algorithms were employed to perform 3D segmentation and quantification of various anatomical features such as visceral fat, subcutaneous fat, muscle mass, liver density, and aortic calcium from the CT images. At the start of the study, 6% of participants were living with diabetes, and during a median follow-up period of 7.3 years, 9% developed the condition.

Findings from the study, published in the journal Radiology, revealed that CT scans can effectively identify individuals at elevated risk for diabetes and related health issues. Among the CT-derived markers, visceral fat measurement was particularly effective in predicting the likelihood of developing diabetes. When this marker was analyzed in conjunction with others—muscle area, liver fat fraction, and aortic calcification—the predictive accuracy further increased. The CT-based indicators also proved more effective than traditional risk factors in predicting conditions associated with diabetes, such as fatty liver identified by ultrasound, coronary artery calcium scores over 100, osteoporosis, and sarcopenia. These insights suggest that CT-derived markers could significantly refine the traditional approaches used in diabetes screening and risk stratification, offering a more comprehensive assessment tool in clinical settings.

“The results are encouraging as they demonstrate the potential of expanding the role of CT imaging from conventional disease diagnosis to opportunistic proactive screening. This automated CT analysis improves risk prediction and early intervention strategies for diabetes and related health issues,” said study senior author Seungho Ryu, M.D., Ph.D., from the Kangbuk Samsung Hospital at Sungkyunkwan University School of Medicine. “By integrating these advanced imaging techniques into opportunistic health screenings, clinicians can identify individuals at high risk for diabetes and its complications more accurately and earlier than the current approach. This could lead to more personalized and timely interventions, ultimately improving patient outcomes.”

Related Links:
Sungkyunkwan University School of Medicine

Wall Fixtures
MRI SERIES
X-ray Diagnostic System
FDX Visionary-A
Portable Color Doppler Ultrasound System
S5000
Silver Member
X-Ray QA Meter
T3 AD Pro

Print article

Channels

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Nuclear Medicine

view channel
Image: A repurposed ALS drug has become an imaging probe to help diagnose neurodegeneration (Photo courtesy of St. Jude Children’s Research Hospital)

Innovative PET Imaging Technique to Help Diagnose Neurodegeneration

Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.