We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Motion Compatible Neuroimaging Device Enables Walking PET Brain Scans

By MedImaging International staff writers
Posted on 08 Aug 2024
Print article
Image: The upright neuroimaging device is expected to expand the ability to research the brain in motion (Photo courtesy of Davidson Chan/WVU)
Image: The upright neuroimaging device is expected to expand the ability to research the brain in motion (Photo courtesy of Davidson Chan/WVU)

Traditional Positron Emission Tomography (PET) scanners require patients to remain still during imaging. This is challenging for diagnosing conditions like Parkinson’s disease, where patients often experience involuntary movements. Such symptoms can make it more difficult to conduct scans when the condition advances, as conventional brain imaging demands complete immobility. Now, an upright neuroimaging device that allows patients to move around while undergoing a brain scan could help address these issues with traditional PET scanners.

The prototype of the new device called an Ambulatory Motion-enabling PET, or AMPET, is an upgrade of an earlier scanner built by a team of neuroscientists, physicists and engineers at West Virginia University (WVU, Morgantown, WV, USA). AMPET is lighter and designed to be worn like a hard hat, providing balanced support on top, allowing it to move with the patient's head. This mobility allows patients to walk around while wearing the device. The team conducted real-world tests to evaluate the accuracy of AMPET and to identify areas for improvement. For these tests, outpatient volunteers who were already scheduled for standard scans and receiving imaging medications were enrolled. These volunteers wore the AMPET helmet and walked in place while the team monitored for motion tolerance and analyzed neural activity in the brain regions associated with movement.

The study successfully recorded brain activity in areas that coordinate leg movement as the patients walked, confirming the device’s capability. This outcome was further supported by scans from a patient with a prosthetic leg, showing significant brain activity in the region associated with his natural leg. The findings, reported in Nature Communications Medicine, highlight the potential of AMPET in clinical and research settings. Plans to enhance the device include adding motion tracking technology and expanding the helmet size to cover larger brain areas. AMPET could also benefit neuroscience research into natural human behaviors like gestures, conversation, and balance, and it has potential applications in treating PTSD, studying mindfulness meditation, and integrating with virtual reality technologies.

“What we demonstrated in the study is that when the patients walk, it’s not moving relative to the head and that’s what allowed us to get a relatively clean image,” said Julie Brefczynski-Lewis, research assistant professor in the Department of Neuroscience at the WVU School of Medicine. “To be able to image the brain in motion, we’re showing that there’s a whole new field that could open up because of our device.”

Related Links:
WVU

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Fixed X-Ray System (RAD)
Allengers 325 - 525
Radiology Software
DxWorks
Wall Fixtures
MRI SERIES

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Dr. Amar Kishan notes that MRI-guided approach enables the use of significantly narrower planning margins when delivering radiation (Photo courtesy of UCLA)

MRI-Guided Radiation Therapy Reduces Long-Term Side Effects in Prostate Cancer Patients

Stereotactic body radiotherapy (SBRT) is a standard treatment for localized prostate cancer. However, the side effects of this treatment can be severe and long-lasting, impacting a patient’s urinary, bowel,... Read more

Ultrasound

view channel
Image: The new software program uses artificial intelligence to read echocardiograms (Photo courtesy of Adobe Stock)

AI Image-Recognition Program Reads Echocardiograms Faster, Cuts Results Wait Time

An echocardiogram is a diagnostic imaging tool that provides valuable insights into heart structure and function, helping doctors to identify and treat various heart conditions. Now, a new study suggests... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.