We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Reduces Unnecessary Radiation Exposure in Traumatic Neuroradiological CT Scans

By MedImaging International staff writers
Posted on 25 Sep 2024
Print article
Image: Comparison of iterative reconstruction (IR2) and deep learning-based denoising (DLD) at 100% mAs and 25% mAs on a non-contrast-enhanced brain CT in a patient with a traumatic brain injury (Photo courtesy of Academic Radiology; doi.org/10.1016/j.acra.2024.08.018)
Image: Comparison of iterative reconstruction (IR2) and deep learning-based denoising (DLD) at 100% mAs and 25% mAs on a non-contrast-enhanced brain CT in a patient with a traumatic brain injury (Photo courtesy of Academic Radiology; doi.org/10.1016/j.acra.2024.08.018)

Traumatic neuroradiological emergencies encompass conditions that require immediate and accurate diagnosis for effective treatment and optimal patient outcomes. These emergencies can include injuries to the brain or spinal cord. Computed tomography (CT) is one of the most widely used imaging techniques in such situations due to its availability and speed, making it a vital tool in emergency departments for assessing the severity of injuries and guiding treatment. However, a significant limitation of CT scans is the relationship between radiation dose and image quality. CT scans involve exposure to ionizing radiation, which poses a potential long-term risk to patients, including the development of cancer. Recently, modern artificial intelligence (AI) reconstruction algorithms have emerged, offering the potential to reduce radiation doses while maintaining high image quality. These AI algorithms could minimize the risks associated with ionizing radiation and improve patient outcomes, though the extent to which they reduce radiation exposure in traumatic neuroradiological CT scans has not been extensively studied.

To address this, researchers at Eberhard Karls-University Tuebingen (Tuebingen, Germany) conducted a comparative study to evaluate the performance of a deep learning-based denoising (DLD) algorithm in CT scans of patients with traumatic neuroradiological emergencies. They proposed that the use of these algorithms could allow for high-quality imaging at reduced radiation doses, thereby improving patient care by minimizing unnecessary radiation exposure. The retrospective, single-center study involved 100 patients who had undergone neuroradiological trauma CT scans. Both full-dose (100%) and low-dose (25%) simulated scans were processed using iterative reconstruction (IR2) and the DLD algorithm. Four neuroradiologists assessed the subjective and objective quality of the images, alongside a clinical endpoint analysis. Bayesian sensitivity and specificity were calculated with 95% credible intervals.

The study found that the DLD algorithm produced high-quality, fully diagnostic CT images at just 25% of the standard radiation dose, demonstrating its potential to enhance patient care by reducing unnecessary radiation exposure. The algorithm’s ability to maintain image quality at significantly lower radiation doses highlights its promise in addressing concerns about radiation exposure, particularly in the context of frequent head CT use in neuroradiological emergencies. This issue has been a growing concern for both patients and physicians, particularly regarding the carcinogenic risks associated with long-term radiation exposure, especially in younger patients. The findings of this study contribute to ongoing efforts to reduce radiation doses in medical imaging and emphasize the importance of further research into dose-reduction techniques.

Related Links:
Eberhard Karls-University Tuebingen

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Fetal Monitor
Avante Compact II
New
Radiology Software
DxWorks
NMUS & MSK Ultrasound
InVisus Pro

Print article

Channels

MRI

view channel
Image: A new paradigm in radiation therapy planning aims to improve treatment outcomes for children with brain tumors (Photo courtesy of 123RF)

AI Software Uses MRI Scans to Automatically Segment Key Brain Structures for Improved Radiation Therapy Planning

Advances in radiation therapy have led to significant innovations in the treatment of brain tumors in children, focusing on precision to minimize damage to surrounding healthy brain tissue.... Read more

Ultrasound

view channel
Image: The augmented reality navigation system could improve lumbar puncture accuracy (Photo courtesy of Clear Guide Medical)

Wearable Ultrasound Navigation System Could Improve Lumbar Puncture Accuracy

A lumbar puncture, or spinal tap, is a common medical procedure in which a hollow needle is inserted into the spinal canal to access cerebrospinal fluid that surrounds the brain and spinal cord.... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Focused ultrasound therapy is poised to become an essential tool in every hospital, cancer care center and physician office (Photo courtesy of Arrayus)

Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer

Pancreatic cancer remains one of the most difficult cancers to treat due to its dense tissue structure, which limits the effectiveness of traditional drug therapies. Bracco Imaging S.A. (Milan, Italy)... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.