We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Virtual Reality Technologies Can Dramatically Reduce Surgical Planning Times and Increase Accuracy

By MedImaging International staff writers
Posted on 23 Mar 2016
Print article
Image: 3D virtual reality rendering of organs for surgical planning can dramatically improve patient outcomes (Photo courtesy of iData Research).
Image: 3D virtual reality rendering of organs for surgical planning can dramatically improve patient outcomes (Photo courtesy of iData Research).
New virtual-reality technologies that use medical images and data from various sources have the potential to dramatically improve patient outcomes.

One recent clinical trial carried out by pediatric surgeons at Stanford University Medical Center (SUMC; Stanford, CA, USA), has enabled surgeons and radiologists to develop more accurate surgical plans in 40% less time. The trial also changed the role of the radiologists who became more involved in treatment planning, and prepared data sets for the surgeons. Surgeons in the SUMC trial used a virtual-reality platform developed by EchoPixel (Mountain View, CA, USA). Other trials have also shown that surgical accuracy can be increased by 10%.

The new technologies will enable doctors to interact with 3-D Magnetic Resonance Imaging (MRI) and ultrasound rendered images of an organ. Smart styluses and other hardware can even provide resistance and tactile feedback similar to an actual operation. Virtual reality could be especially useful in medical training, although widespread adoption of such technology will take several more years, as medical professionals are not willing to make abrupt changes in their way of working.

Sandeep Gupta, manager of Biomedical Image Analysis, GE Global Research, said, “VR gives a very immersive way of looking at all this data, which is working to integrate virtual reality into its existing imaging equipment. Doctors may be able to see which brain regions are affected by a neurodegenerative disease, for example, or which neural pathways information and signals are flowing through.”

Related Links:

SUMC
EchoPixel


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Gold Member
X-Ray QA Meter
T3 RG Pro
Wall Fixtures
MRI SERIES
Radiology Software
DxWorks

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.