We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Cause of Blurry Vision on Long Space Missions Found

By MedImaging International staff writers
Posted on 17 Jan 2017
Print article
Image: An abruptly angulated foci in the optic nerve sheath, as well as globe flattening at the back of the eyeball, from a 2012 study of astronauts (Photo courtesy of RSNA).
Image: An abruptly angulated foci in the optic nerve sheath, as well as globe flattening at the back of the eyeball, from a 2012 study of astronauts (Photo courtesy of RSNA).
Scientists studying the cause of visual impairments suffered by astronauts during long space missions have discovered that the problem is related to changes in the volume of Cerebro-Spinal Fluid (CSF), flattening of the eyeballs, and increased protrusion of the optic nerves.

The researchers carried out high-resolution Magnetic Resonance Imaging (MRI) scans of the eye orbits and the brains of seven astronauts before and shortly after long-duration missions on the International Space Station (ISS). The researchers compared the results with those of astronauts from nine short-duration missions in space. The MRI results were analyzed using advanced quantitative imaging algorithms.

Flight surgeons and scientists at the US National Aeronautics and Space Administration (NASA) had already observed for ten years that nearly two-thirds of astronauts on long ISS missions suffered from Visual Impairment Intracranial Pressure (VIIP).

The results showed significantly increased post-flight flattening of the eyeballs and increased CSF volume in astronauts on long-duration flights compared to those on short-duration flights. Brain grey or white matter volume was not significantly different between the groups.

Lead author of the study, Noam Alperin, PhD, University of Miami Miller School of Medicine, said, "People initially didn't know what to make of it, and by 2010 there was growing concern as it became apparent that some of the astronauts had severe structural changes that were not fully reversible upon return to earth. On earth, the CSF system is built to accommodate these pressure changes, but in space the system is confused by the lack of the posture-related pressure changes. If the ocular structural deformations are not identified early, astronauts could suffer irreversible damage. As the eye globe becomes more flattened, the astronauts become hyperopic, or far-sighted."

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Opaque X-Ray Mobile Lead Barrier
2594M
Wall Fixtures
MRI SERIES
New
Ultra-Flat DR Detector
meX+1717SCC

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.