We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Researchers Train Model to Identify Breast Lesions

By MedImaging International staff writers
Posted on 24 Oct 2017
Print article
Image: The scatterplot shows the machine learning model score compared to a random number in the independent test set (Photo courtesy of RSNA).
Image: The scatterplot shows the machine learning model score compared to a random number in the independent test set (Photo courtesy of RSNA).
Researchers have trained a machine-learning tool to identify high-risk, biopsy-diagnosed breast cancer lesions that are unlikely to become cancerous, and do not require immediate surgery.

The model was 97% accurate in its predictions and could help reduce unnecessary breast cancer surgeries by 33%. High-risk lesions have a higher risk of developing into cancer, but many such lesions could be safely monitored using imaging, without requiring surgery.

The study was published online in the October 2017 issue of the journal Radiology by researchers from Massachusetts Institute of Technology (MIT; Boston, MA, USA), and Massachusetts General Hospital (MGH; Boston, MA, USA). The machine-learning tool enabled the researchers to find those high-risk lesions that have a low risk of being upgraded to cancer.

The model took account of patient age, lesion histology, and other standard risk factors, but also included keywords from biopsy pathology reports. The researchers trained the model using patients with biopsy-proven high-risk lesions. After training the model on two-thirds of the high-risk lesions, the researchers found that they were able to identify 97% of the lesions that were upgraded to cancer. The researchers also found that by using the model they could help avoid almost one-third of the surgeries of benign tumors.

The author of the study, radiologist Manisha Bahl, MD, MPH, from MGH and Harvard Medical School, said, "There are different types of high-risk lesions. Most institutions recommend surgical excision for high-risk lesions such as atypical ductal hyperplasia, for which the risk of upgrade to cancer is about 20%. For other types of high-risk lesions, the risk of upgrade varies quite a bit in the literature, and patient management, including the decision about whether to remove or survey the lesion, varies across practices. Our goal is to apply the tool in clinical settings to help make more informed decisions as to which patients will be surveilled and which will go on to surgery."

Related Links:
Massachusetts Institute of Technology
Massachusetts General Hospital

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Fixed X-Ray System (RAD)
Allengers 325 - 525
New
Transducer Covers
Surgi Intraoperative Covers
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Dr. Amar Kishan notes that MRI-guided approach enables the use of significantly narrower planning margins when delivering radiation (Photo courtesy of UCLA)

MRI-Guided Radiation Therapy Reduces Long-Term Side Effects in Prostate Cancer Patients

Stereotactic body radiotherapy (SBRT) is a standard treatment for localized prostate cancer. However, the side effects of this treatment can be severe and long-lasting, impacting a patient’s urinary, bowel,... Read more

Ultrasound

view channel
Image: The new software program uses artificial intelligence to read echocardiograms (Photo courtesy of Adobe Stock)

AI Image-Recognition Program Reads Echocardiograms Faster, Cuts Results Wait Time

An echocardiogram is a diagnostic imaging tool that provides valuable insights into heart structure and function, helping doctors to identify and treat various heart conditions. Now, a new study suggests... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.