Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Artificial Intelligence Accelerates Chest X-Ray Analysis

By MedImaging International staff writers
Posted on 05 Feb 2019
A novel artificial Intelligence (AI) system can dramatically reduce the time needed to receive an expert radiologist opinion on abnormal chest X-rays with critical findings, claims a new study.

Developed by researchers at King’s College London (KCL; United Kingdom), the University of Warwick (Coventry, United Kingdom), and other institutions, the AI system was developed using 470,388 fully anonymized institutional adult chest radiographs acquired from 2007 to 2017. The accompanying radiology reports were pre-processed using an in-house natural language processing (NLP) system modeling radiologic language, which analyzed the free-text reports to prioritize each radiograph as critical, urgent, non-urgent, or normal.

An ensemble of two deep convolutional neural networks (CNNs) was then trained to predict the clinical priority from radiologic appearances alone. The system’s performance in radiograph prioritization was tested in a simulation by using an independent set of 15,887 radiographs. Prediction performance was assessed with the area under the receiver operating characteristic curve, with sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) also determined, with the intention of automating real-time adult chest radiographs reporting based on image appearance.

The results revealed that normal chest radiographs (used to diagnose and monitor a wide range of conditions affecting the lungs, heart, bones, and soft tissues) were detected by the AI system with a sensitivity of 71%, specificity of 95%, PPV of 73%, and NPV of 94%. The average reporting delay using the algorithms was reduced from 11.2 to just 2.7 days for critical imaging findings, and from 7.6 to 4.1 days for urgent imaging findings, when compared with historical data. The study was published on January 19, 2019, in Radiology.

“The increasing clinical demands on radiology departments worldwide have challenged current service delivery models. It is no longer feasible for many Radiology departments with their current staffing level to report all acquired plain radiographs in a timely manner, leading to large backlogs of unreported studies,” said senior author Professor Giovanni Montana, MD, of the University of Warwick. “In the UK, it is estimated that at any time there are over 300,000 radiographs waiting over 30 days for reporting. Alternative models of care, such as computer vision algorithms, could be used to greatly reduce delays in the process of identifying and acting on abnormal X-rays -- particularly for chest radiographs.”

CNN’s use a cascade of many layers of nonlinear processing units for images or other data feature extraction and transformation, with each successive layer using the output from the previous layer as input in order to form a hierarchical representation.

Related Links:
King’s College London
University of Warwick


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Pre-Op Planning Solution
Sectra 3D Trauma
Ultrasound Software
UltraExtend NX
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.