We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Algorithm Outperforms Radiologists in Detecting Pneumonia on X-Rays

By MedImaging International staff writers
Posted on 21 Nov 2017
Print article
Image: The algorithm CheXNet can diagnose up to 14 types of medical conditions, including pneumonia (Photo courtesy of Stanford ML Group).
Image: The algorithm CheXNet can diagnose up to 14 types of medical conditions, including pneumonia (Photo courtesy of Stanford ML Group).
A deep learning algorithm developed by researchers from the Stanford University (Stanford, CA, USA) that evaluates chest X-rays for signs of disease has outperformed expert radiologists at diagnosing pneumonia in just over a month of its development. A paper about the algorithm named CheXNet, which can diagnose up to 14 types of medical conditions, was published November 14 on the open-access, scientific preprint website arXiv.

Soon after the National Institutes of Health Clinical Center recently released a public dataset containing 112,120 frontal-view chest X-ray images labeled with up to 14 possible pathologies, the Machine Learning Group at Stanford began developing an algorithm that could automatically diagnose the pathologies. Meanwhile, four Stanford radiologists independently annotated 420 of the images for possible indications of pneumonia. Within a week the researchers had developed an algorithm that diagnosed 10 of the pathologies labeled in the X-rays more accurately than the previous state-of-the-art results. In just over a month, CheXNet could beat these standards in all 14 identification tasks and also outperformed the four individual Stanford radiologists in pneumonia diagnoses.

The Stanford researchers have also developed a computer-based tool that produces what appears to be a heat map of chest X-rays, although instead of representing temperature, the colors of these maps represent the areas determined by the algorithm as the ones most likely to represent pneumonia. The tool could help reduce the amount of missed pneumonia cases and significantly accelerate the workflow of radiologists by indicating where to look first, resulting in faster diagnoses for the sickest patients.

“We plan to continue building and improving upon medical algorithms that can automatically detect abnormalities and we hope to make high-quality, anonymized medical datasets publicly available for others to work on similar problems,” said Jeremy Irvin, a graduate student in the Machine Learning group and co-lead author of the paper. “There is massive potential for machine learning to improve the current health care system, and we want to continue to be at the forefront of innovation in the field.”

Related Links:
Stanford University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Diagnostic Ultrasound System
MS1700C
Ultrasound Color LCD
U156W
LED-Based X-Ray Viewer
Dixion X-View

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.