We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI in Medical Imaging to Surge in Coming Years

By MedImaging International staff writers
Posted on 21 Feb 2018
Print article
The use of machine learning or artificial intelligence (AI) technology by hospitals and imaging centers is expected to surge by 2020, with its highest application to be in the area of breast imaging.

These are the latest findings of a survey conducted by the research firm Reaction Data (American Fork, UT, USA) that polled more than 130 industry professionals, including directors of radiology, radiologists and imaging directors, to find their views on the use of machine learning algorithms in medical imaging.

According to the survey, the most common application for machine learning is in breast imaging, followed by lung and chest X-rays. Radiologists plan to apply machine learning to many other areas of medical imaging, and its use in cardiovascular imaging, pulmonary hypertension imaging and neural aneurysm imaging is likely to witness a steep and rapid adoption in the near future.

The survey found that only 16% of medical imaging professionals had no plans to adopt machine learning, whereas the majority of respondents viewed the technology as being either important or extremely important in medical imaging. Most radiology departments and imaging centers plan to begin using machine learning jump before 2020, while the remaining organizations are expected to follow a few years later. Interestingly, the survey found that there has been very little adoption of machine learning by imaging centers and all of the adopters are hospitals.

The research concluded that machine learning in medical imaging was not hype and the huge investments being made in the field were justified. However, given the cost pressures in radiology and in other areas of medical imaging, it still remains to be seen how AI solution vendors would profit from selling their AI and justify the additional expenses over the long-term. The current scenario also raises certain questions such as whether AI solutions would end up replacing, or radically altering, current imaging solutions like PACS or just be an add on.

The research found the rapid level of adoption and ability of AI to aid clinicians in their critical jobs to be encouraging, but notes that AI is unlikely to replace people and will only act as another valuable tool to help clinicians perform better, ultimately leading to improvement in patient care and control over costs in the long-term.

Related Links:
Reaction Data

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Gold Member
X-Ray QA Meter
T3 RG Pro
New
Mini C-arm Imaging System
Fluoroscan InSight FD
Radiation Therapy Treatment Software Application
Elekta ONE

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.